Program Listing for File Graph.hpp

Return to documentation for file (include/networkit/graph/Graph.hpp)

/*
 * Graph.hpp
 *
 *  Created on: 01.06.2014
 *      Author: Christian Staudt
 *              Klara Reichard <klara.reichard@gmail.com>
 *              Marvin Ritter <marvin.ritter@gmail.com>
 */

#ifndef NETWORKIT_GRAPH_GRAPH_HPP_
#define NETWORKIT_GRAPH_GRAPH_HPP_

#include <algorithm>
#include <fstream>
#include <functional>
#include <iostream>
#include <memory>
#include <numeric>
#include <omp.h>
#include <queue>
#include <ranges>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <typeindex>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include <networkit/Globals.hpp>
#include <networkit/auxiliary/ArrayTools.hpp>
#include <networkit/auxiliary/FunctionTraits.hpp>
#include <networkit/auxiliary/Log.hpp>
#include <networkit/auxiliary/Random.hpp>
#include <networkit/graph/Attributes.hpp>
#include <networkit/graph/EdgeIterators.hpp>
#include <networkit/graph/NeighborIterators.hpp>
#include <networkit/graph/NodeIterators.hpp>

#include <tlx/define/deprecated.hpp>

namespace NetworKit {

struct Edge {
    node u, v;

    Edge() : u(none), v(none) {}

    Edge(node _u, node _v, bool sorted = false) {
        u = sorted ? std::min(_u, _v) : _u;
        v = sorted ? std::max(_u, _v) : _v;
    }
};

struct WeightedEdge : Edge {
    edgeweight weight;

    // Needed by cython
    WeightedEdge() : Edge(), weight(std::numeric_limits<edgeweight>::max()) {}

    WeightedEdge(node u, node v, edgeweight w) : Edge(u, v), weight(w) {}
};

struct WeightedEdgeWithId : WeightedEdge {
    edgeid eid;

    WeightedEdgeWithId(node u, node v, edgeweight w, edgeid eid)
        : WeightedEdge(u, v, w), eid(eid) {}
};

inline bool operator==(const Edge &e1, const Edge &e2) {
    return e1.u == e2.u && e1.v == e2.v;
}

inline bool operator<(const WeightedEdge &e1, const WeightedEdge &e2) {
    return e1.weight < e2.weight;
}

struct Unsafe {};
static constexpr Unsafe unsafe{};
} // namespace NetworKit

namespace std {
template <>
struct hash<NetworKit::Edge> {
    size_t operator()(const NetworKit::Edge &e) const { return hash_node(e.u) ^ hash_node(e.v); }

    hash<NetworKit::node> hash_node;
};
} // namespace std

namespace NetworKit {

// forward declaration to randomization/CurveballImpl.hpp
namespace CurveballDetails {
class CurveballMaterialization;
}

class Graph final {

    // graph attributes
    count n;
    count m;

    count storedNumberOfSelfLoops;

    node z;
    edgeid omega;
    count t;

    bool weighted;
    bool directed;
    bool edgesIndexed;

    bool maintainCompactEdges = false;
    bool maintainSortedEdges = false;

    edgeid deletedID;

    // per node data
    std::vector<bool> exists;

    std::vector<std::vector<node>> inEdges;
    std::vector<std::vector<node>> outEdges;

    std::vector<std::vector<edgeweight>> inEdgeWeights;
    std::vector<std::vector<edgeweight>> outEdgeWeights;

    std::vector<std::vector<edgeid>> inEdgeIds;
    std::vector<std::vector<edgeid>> outEdgeIds;

private:
    AttributeMap<PerNode, Graph> nodeAttributeMap;
    AttributeMap<PerEdge, Graph> edgeAttributeMap;

public:
    auto &nodeAttributes() noexcept { return nodeAttributeMap; }
    const auto &nodeAttributes() const noexcept { return nodeAttributeMap; }
    auto &edgeAttributes() noexcept { return edgeAttributeMap; }
    const auto &edgeAttributes() const noexcept { return edgeAttributeMap; }

    // wrap up some typed attributes for the cython interface:
    //

    auto attachNodeIntAttribute(const std::string &name) {
        nodeAttributes().theGraph = this;
        return nodeAttributes().attach<int>(name);
    }

    auto attachEdgeIntAttribute(const std::string &name) {
        edgeAttributes().theGraph = this;
        return edgeAttributes().attach<int>(name);
    }

    auto attachNodeDoubleAttribute(const std::string &name) {
        nodeAttributes().theGraph = this;
        return nodeAttributes().attach<double>(name);
    }

    auto attachEdgeDoubleAttribute(const std::string &name) {
        edgeAttributes().theGraph = this;
        return edgeAttributes().attach<double>(name);
    }

    auto attachNodeStringAttribute(const std::string &name) {
        nodeAttributes().theGraph = this;
        return nodeAttributes().attach<std::string>(name);
    }

    auto attachEdgeStringAttribute(const std::string &name) {
        edgeAttributes().theGraph = this;
        return edgeAttributes().attach<std::string>(name);
    }

    auto getNodeIntAttribute(const std::string &name) {
        nodeAttributes().theGraph = this;
        return nodeAttributes().get<int>(name);
    }

    auto getEdgeIntAttribute(const std::string &name) {
        edgeAttributes().theGraph = this;
        return edgeAttributes().get<int>(name);
    }

    auto getNodeDoubleAttribute(const std::string &name) {
        nodeAttributes().theGraph = this;
        return nodeAttributes().get<double>(name);
    }

    auto getEdgeDoubleAttribute(const std::string &name) {
        edgeAttributes().theGraph = this;
        return edgeAttributes().get<double>(name);
    }

    auto getNodeStringAttribute(const std::string &name) {
        nodeAttributes().theGraph = this;
        return nodeAttributes().get<std::string>(name);
    }

    auto getEdgeStringAttribute(const std::string &name) {
        edgeAttributes().theGraph = this;
        return edgeAttributes().get<std::string>(name);
    }

    void detachNodeAttribute(std::string const &name) {
        nodeAttributes().theGraph = this;
        nodeAttributes().detach(name);
    }

    void detachEdgeAttribute(std::string const &name) {
        edgeAttributes().theGraph = this;
        edgeAttributes().detach(name);
    }

    using NodeIntAttribute = Attribute<PerNode, Graph, int, false>;
    using NodeDoubleAttribute = Attribute<PerNode, Graph, double, false>;
    using NodeStringAttribute = Attribute<PerNode, Graph, std::string, false>;

    using EdgeIntAttribute = Attribute<PerEdge, Graph, int, false>;
    using EdgeDoubleAttribute = Attribute<PerEdge, Graph, double, false>;
    using EdgeStringAttribute = Attribute<PerEdge, Graph, std::string, false>;

private:
    index indexInInEdgeArray(node v, node u) const;

    index indexInOutEdgeArray(node u, node v) const;

    edgeweight computeWeightedDegree(node u, bool inDegree = false,
                                     bool countSelfLoopsTwice = false) const;

    template <bool hasWeights>
    inline edgeweight getOutEdgeWeight(node u, index i) const;

    template <bool hasWeights>
    inline edgeweight getInEdgeWeight(node u, index i) const;

    template <bool graphHasEdgeIds>
    inline edgeid getOutEdgeId(node u, index i) const;

    template <bool graphHasEdgeIds>
    inline edgeid getInEdgeId(node u, index i) const;

    template <bool graphIsDirected>
    inline bool useEdgeInIteration(node u, node v) const;

    template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
    inline void forOutEdgesOfImpl(node u, L handle) const;

    template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
    inline void forInEdgesOfImpl(node u, L handle) const;

    template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
    inline void forEdgeImpl(L handle) const;

    template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
    inline void parallelForEdgesImpl(L handle) const;

    template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
    inline double parallelSumForEdgesImpl(L handle) const;

    /*
     * In the following definition, Aux::FunctionTraits is used in order to only
     * execute lambda functions with the appropriate parameters. The
     * decltype-return type is used for determining the return type of the
     * lambda (needed for summation) but also determines if the lambda accepts
     * the correct number of parameters. Otherwise the return type declaration
     * fails and the function is excluded from overload resolution. Then there
     * are multiple possible lambdas with three (third parameter id or weight)
     * and two (second parameter can be second node id or edge weight for
     * neighbor iterators). This is checked using Aux::FunctionTraits and
     * std::enable_if. std::enable_if only defines the type member when the
     * given bool is true, this bool comes from std::is_same which compares two
     * types. The function traits give either the parameter type or if it is out
     * of bounds they define type as void.
     */

    template <class F, void * = (void *)0>
    typename Aux::FunctionTraits<F>::result_type edgeLambda(F &, ...) const {
        // the strange condition is used in order to delay the evaluation of the
        // static assert to the moment when this function is actually used
        static_assert(!std::is_same<F, F>::value,
                      "Your lambda does not support the required parameters or the "
                      "parameters have the wrong type.");
        return std::declval<typename Aux::FunctionTraits<F>::result_type>(); // use the correct
                                                                             // return type (this
                                                                             // won't compile)
    }

    template <class F,
              typename std::enable_if<
                  (Aux::FunctionTraits<F>::arity >= 3)
                  && std::is_same<edgeweight,
                                  typename Aux::FunctionTraits<F>::template arg<2>::type>::value
                  && std::is_same<edgeid, typename Aux::FunctionTraits<F>::template arg<3>::type>::
                      value>::type * = (void *)0>
    auto edgeLambda(F &f, node u, node v, edgeweight ew, edgeid id) const
        -> decltype(f(u, v, ew, id)) {
        return f(u, v, ew, id);
    }

    template <
        class F,
        typename std::enable_if<
            (Aux::FunctionTraits<F>::arity >= 2)
            && std::is_same<edgeid, typename Aux::FunctionTraits<F>::template arg<2>::type>::value
            && std::is_same<node, typename Aux::FunctionTraits<F>::template arg<1>::type>::
                value /* prevent f(v, weight, eid)
                       */
            >::type * = (void *)0>
    auto edgeLambda(F &f, node u, node v, edgeweight, edgeid id) const -> decltype(f(u, v, id)) {
        return f(u, v, id);
    }

    template <class F,
              typename std::enable_if<
                  (Aux::FunctionTraits<F>::arity >= 2)
                  && std::is_same<edgeweight, typename Aux::FunctionTraits<F>::template arg<
                                                  2>::type>::value>::type * = (void *)0>
    auto edgeLambda(F &f, node u, node v, edgeweight ew, edgeid /*id*/) const
        -> decltype(f(u, v, ew)) {
        return f(u, v, ew);
    }

    template <class F, typename std::enable_if<
                           (Aux::FunctionTraits<F>::arity >= 1)
                           && std::is_same<node, typename Aux::FunctionTraits<F>::template arg<
                                                     1>::type>::value>::type * = (void *)0>
    auto edgeLambda(F &f, node u, node v, edgeweight /*ew*/, edgeid /*id*/) const
        -> decltype(f(u, v)) {
        return f(u, v);
    }

    template <class F,
              typename std::enable_if<
                  (Aux::FunctionTraits<F>::arity >= 1)
                  && std::is_same<edgeweight, typename Aux::FunctionTraits<F>::template arg<
                                                  1>::type>::value>::type * = (void *)0>
    auto edgeLambda(F &f, node, node v, edgeweight ew, edgeid /*id*/) const -> decltype(f(v, ew)) {
        return f(v, ew);
    }

    template <class F, void * = (void *)0>
    auto edgeLambda(F &f, node, node v, edgeweight, edgeid) const -> decltype(f(v)) {
        return f(v);
    }

    template <class F>
    auto callBFSHandle(F &f, node u, count dist) const -> decltype(f(u, dist)) {
        return f(u, dist);
    }

    template <class F>
    auto callBFSHandle(F &f, node u, count) const -> decltype(f(u)) {
        return f(u);
    }

public:
    // For support of API: NetworKit::Graph::NodeIterator
    using NodeIterator = NodeIteratorBase<Graph>;
    // For support of API: NetworKit::Graph::NodeRange
    using NodeRange = NodeRangeBase<Graph>;

    // For support of API: NetworKit::Graph:EdgeIterator
    using EdgeIterator = EdgeTypeIterator<Graph, Edge>;
    // For support of API: NetworKit::Graph:EdgeWeightIterator
    using EdgeWeightIterator = EdgeTypeIterator<Graph, WeightedEdge>;
    // For support of API: NetworKit::Graph:EdgeRange
    using EdgeRange = EdgeTypeRange<Graph, Edge>;
    // For support of API: NetworKit::Graph:EdgeWeightRange
    using EdgeWeightRange = EdgeTypeRange<Graph, WeightedEdge>;

    // For support of API: NetworKit::Graph::NeighborIterator;
    using NeighborIterator = NeighborIteratorBase<std::vector<node>>;
    // For support of API: NetworKit::Graph::NeighborIterator;
    using NeighborWeightIterator =
        NeighborWeightIteratorBase<std::vector<node>, std::vector<edgeweight>>;

    template <bool InEdges = false>
    class NeighborRange {
        const Graph *G;
        node u;

    public:
        NeighborRange(const Graph &G, node u) : G(&G), u(u) { assert(G.hasNode(u)); };

        NeighborRange() : G(nullptr){};

        NeighborIterator begin() const {
            assert(G);
            return InEdges ? NeighborIterator(G->inEdges[u].begin())
                           : NeighborIterator(G->outEdges[u].begin());
        }

        NeighborIterator end() const {
            assert(G);
            return InEdges ? NeighborIterator(G->inEdges[u].end())
                           : NeighborIterator(G->outEdges[u].end());
        }
    };

    using OutNeighborRange = NeighborRange<false>;

    using InNeighborRange = NeighborRange<true>;
    template <bool InEdges = false>
    class NeighborWeightRange {

        const Graph *G;
        node u;

    public:
        NeighborWeightRange(const Graph &G, node u) : G(&G), u(u) { assert(G.hasNode(u)); };

        NeighborWeightRange() : G(nullptr){};

        NeighborWeightIterator begin() const {
            assert(G);
            return InEdges
                       ? NeighborWeightIterator(G->inEdges[u].begin(), G->inEdgeWeights[u].begin())
                       : NeighborWeightIterator(G->outEdges[u].begin(),
                                                G->outEdgeWeights[u].begin());
        }

        NeighborWeightIterator end() const {
            assert(G);
            return InEdges
                       ? NeighborWeightIterator(G->inEdges[u].end(), G->inEdgeWeights[u].end())
                       : NeighborWeightIterator(G->outEdges[u].end(), G->outEdgeWeights[u].end());
        }
    };

    using OutNeighborWeightRange = NeighborWeightRange<false>;

    using InNeighborWeightRange = NeighborWeightRange<true>;

    Graph(count n = 0, bool weighted = false, bool directed = false, bool edgesIndexed = false);

    template <class EdgeMerger = std::plus<edgeweight>>
    Graph(const Graph &G, bool weighted, bool directed, bool edgesIndexed = false,
          EdgeMerger edgeMerger = std::plus<edgeweight>())
        : n(G.n), m(G.m), storedNumberOfSelfLoops(G.storedNumberOfSelfLoops), z(G.z),
          omega(edgesIndexed ? G.omega : 0), t(G.t), weighted(weighted), directed(directed),
          edgesIndexed(edgesIndexed), // edges are not indexed by default
          exists(G.exists),

          // let the following be empty for the start, we fill them later
          inEdges(0), outEdges(0), inEdgeWeights(0), outEdgeWeights(0), inEdgeIds(0), outEdgeIds(0),

          // copy node attribute map
          nodeAttributeMap(G.nodeAttributeMap, this),
          // fill this later
          edgeAttributeMap(this) {

        if (G.isDirected() == directed) {
            // G.inEdges might be empty (if G is undirected), but
            // that's fine
            inEdges = G.inEdges;
            outEdges = G.outEdges;
            edgeAttributeMap = AttributeMap(G.edgeAttributeMap, this);

            // copy weights if needed
            if (weighted) {
                if (G.isWeighted()) {
                    // just copy from G, again either both graphs are directed or both are
                    // undirected
                    inEdgeWeights = G.inEdgeWeights;
                    outEdgeWeights = G.outEdgeWeights;
                } else {
                    // G has no weights, set defaultEdgeWeight for all edges
                    if (directed) {
                        inEdgeWeights.resize(z);
                        for (node u = 0; u < z; u++) {
                            inEdgeWeights[u].resize(G.inEdges[u].size(), defaultEdgeWeight);
                        }
                    }

                    outEdgeWeights.resize(z);
                    for (node u = 0; u < z; u++) {
                        outEdgeWeights[u].resize(outEdges[u].size(), defaultEdgeWeight);
                    }
                }
            }
            if (G.hasEdgeIds() && edgesIndexed) {
                inEdgeIds = G.inEdgeIds;
                outEdgeIds = G.outEdgeIds;
            }
        } else if (G.isDirected()) {
            // G is directed, but we want an undirected graph
            // so we need to combine the out and in stuff for every node

            // for edge attributes, it is not well defined how they should be comined - we will skip
            // that step and warn the user
            WARN("Edge attributes are not preserved when converting from directed to undirected "
                 "graphs. The resulting graph will have empty edge attributes.");

            outEdges.resize(z);
            if (weighted)
                outEdgeWeights.resize(z);
            if (G.hasEdgeIds() && edgesIndexed)
                outEdgeIds.resize(z);
            G.balancedParallelForNodes([&](node u) {
                // copy both out and in edges into our new outEdges
                outEdges[u].reserve(G.outEdges[u].size() + G.inEdges[u].size());
                outEdges[u].insert(outEdges[u].end(), G.outEdges[u].begin(), G.outEdges[u].end());
                if (weighted) {
                    if (G.isWeighted()) {
                        // same for weights
                        outEdgeWeights[u].reserve(G.outEdgeWeights[u].size()
                                                  + G.inEdgeWeights[u].size());
                        outEdgeWeights[u].insert(outEdgeWeights[u].end(),
                                                 G.outEdgeWeights[u].begin(),
                                                 G.outEdgeWeights[u].end());
                    } else {
                        // we are undirected, so no need to write anything into inEdgeWeights
                        outEdgeWeights[u].resize(outEdges[u].size(), defaultEdgeWeight);
                    }
                }
                if (G.hasEdgeIds() && edgesIndexed) {
                    // copy both out and in edges ids into our new outEdgesIds
                    outEdgeIds[u].reserve(G.outEdgeIds[u].size() + G.inEdgeIds[u].size());
                    outEdgeIds[u].insert(outEdgeIds[u].end(), G.outEdgeIds[u].begin(),
                                         G.outEdgeIds[u].end());
                }
            });
            G.balancedParallelForNodes([&](node u) {
                // this is necessary to avoid multi edges, because both u -> v and v -> u can exist
                // in G
                count edgeSurplus = 0;
                for (count i = 0; i < G.inEdges[u].size(); ++i) {
                    node v = G.inEdges[u][i];
                    bool alreadyPresent = false;
                    for (count j = 0; j < G.outEdges[u].size(); ++j) {
                        if (v != G.outEdges[u][j])
                            continue; // the edge already exists as an out edge
                        alreadyPresent = true;
                        if (u != v) {
                            ++edgeSurplus;
                            if (weighted) // we need combine those edges weights when making it a
                                          // single edge
                                outEdgeWeights[u][j] =
                                    G.isWeighted()
                                        ? edgeMerger(G.inEdgeWeights[u][i], G.outEdgeWeights[u][j])
                                        : edgeMerger(defaultEdgeWeight, defaultEdgeWeight);
                            if (G.hasEdgeIds() && edgesIndexed)
                                outEdgeIds[u][j] = std::min(G.inEdgeIds[u][i], G.outEdgeIds[u][j]);
                        }
                        break;
                    }
                    if (!alreadyPresent) { // an equivalent out edge wasn't present so we add it
                        outEdges[u].push_back(v);
                        if (weighted)
                            outEdgeWeights[u].push_back(G.isWeighted() ? G.inEdgeWeights[u][i]
                                                                       : defaultEdgeWeight);
                        if (G.hasEdgeIds() && edgesIndexed)
                            outEdgeIds[u].push_back(G.inEdgeIds[u][i]);
                    }
                }
#pragma omp atomic
                m -= edgeSurplus;
            });
        } else {
            // G is not directed, but this copy should be
            // generally we can can copy G.out stuff into our in stuff

            // for edge attributes, we currently do not have a way to iterate them for duplication
            WARN("Edge attributes are currently not preserved when converting from undirected to "
                 "directed graphs.");

            inEdges = G.outEdges;
            outEdges = G.outEdges;
            if (weighted) {
                if (G.isWeighted()) {
                    inEdgeWeights = G.outEdgeWeights;
                    outEdgeWeights = G.outEdgeWeights;
                } else {
                    // initialize both inEdgeWeights and outEdgeWeights with the
                    // defaultEdgeWeight
                    inEdgeWeights.resize(z);
                    for (node u = 0; u < z; ++u) {
                        inEdgeWeights[u].resize(inEdges[u].size(), defaultEdgeWeight);
                    }
                    outEdgeWeights.resize(z);
                    for (node u = 0; u < z; ++u) {
                        outEdgeWeights[u].resize(outEdges[u].size(), defaultEdgeWeight);
                    }
                }
            }
            if (G.hasEdgeIds() && edgesIndexed) {
                inEdgeIds = G.outEdgeIds;
                outEdgeIds = G.outEdgeIds;
            }
        }

        if (!G.edgesIndexed && edgesIndexed)
            indexEdges();
    }

    Graph(std::initializer_list<WeightedEdge> edges);

    Graph(const Graph &other)
        : n(other.n), m(other.m), storedNumberOfSelfLoops(other.storedNumberOfSelfLoops),
          z(other.z), omega(other.omega), t(other.t), weighted(other.weighted),
          directed(other.directed), edgesIndexed(other.edgesIndexed), exists(other.exists),
          inEdges(other.inEdges), outEdges(other.outEdges), inEdgeWeights(other.inEdgeWeights),
          outEdgeWeights(other.outEdgeWeights), inEdgeIds(other.inEdgeIds),
          outEdgeIds(other.outEdgeIds),
          // call special constructors to copy attribute maps
          nodeAttributeMap(other.nodeAttributeMap, this),
          edgeAttributeMap(other.edgeAttributeMap, this){};

    Graph(Graph &&other) noexcept
        : n(other.n), m(other.m), storedNumberOfSelfLoops(other.storedNumberOfSelfLoops),
          z(other.z), omega(other.omega), t(other.t), weighted(other.weighted),
          directed(other.directed), edgesIndexed(other.edgesIndexed),
          exists(std::move(other.exists)), inEdges(std::move(other.inEdges)),
          outEdges(std::move(other.outEdges)), inEdgeWeights(std::move(other.inEdgeWeights)),
          outEdgeWeights(std::move(other.outEdgeWeights)), inEdgeIds(std::move(other.inEdgeIds)),
          outEdgeIds(std::move(other.outEdgeIds)),
          nodeAttributeMap(std::move(other.nodeAttributeMap)),
          edgeAttributeMap(std::move(other.edgeAttributeMap)) {
        // attributes: set graph pointer to this new graph
        nodeAttributeMap.theGraph = this;
        edgeAttributeMap.theGraph = this;
    };

    ~Graph() = default;

    Graph &operator=(Graph &&other) noexcept {
        std::swap(n, other.n);
        std::swap(m, other.m);
        std::swap(storedNumberOfSelfLoops, other.storedNumberOfSelfLoops);
        std::swap(z, other.z);
        std::swap(omega, other.omega);
        std::swap(t, other.t);
        std::swap(weighted, other.weighted);
        std::swap(directed, other.directed);
        std::swap(edgesIndexed, other.edgesIndexed);
        std::swap(exists, other.exists);
        std::swap(inEdges, other.inEdges);
        std::swap(outEdges, other.outEdges);
        std::swap(inEdgeWeights, other.inEdgeWeights);
        std::swap(outEdgeWeights, other.outEdgeWeights);
        std::swap(inEdgeIds, other.inEdgeIds);
        std::swap(outEdgeIds, other.outEdgeIds);

        // attributes: set graph pointer to this new graph
        std::swap(nodeAttributeMap, other.nodeAttributeMap);
        std::swap(edgeAttributeMap, other.edgeAttributeMap);
        nodeAttributeMap.theGraph = this;
        edgeAttributeMap.theGraph = this;

        return *this;
    };

    Graph &operator=(const Graph &other) {
        n = other.n;
        m = other.m;
        storedNumberOfSelfLoops = other.storedNumberOfSelfLoops;
        z = other.z;
        omega = other.omega;
        t = other.t;
        weighted = other.weighted;
        directed = other.directed;
        edgesIndexed = other.edgesIndexed;
        exists = other.exists;
        inEdges = other.inEdges;
        outEdges = other.outEdges;
        inEdgeWeights = other.inEdgeWeights;
        outEdgeWeights = other.outEdgeWeights;
        inEdgeIds = other.inEdgeIds;
        outEdgeIds = other.outEdgeIds;

        // call special constructors to copy attribute maps
        nodeAttributeMap = AttributeMap(other.nodeAttributeMap, this);
        edgeAttributeMap = AttributeMap(other.edgeAttributeMap, this);

        return *this;
    };

    void preallocateUndirected(node u, size_t size);

    void preallocateDirected(node u, size_t outSize, size_t inSize);

    void preallocateDirectedOutEdges(node u, size_t outSize);

    void preallocateDirectedInEdges(node u, size_t inSize);

    void indexEdges(bool force = false);

    bool hasEdgeIds() const noexcept { return edgesIndexed; }

    edgeid edgeId(node u, node v) const;

    std::pair<node, node> edgeById(index id) const {
        std::pair<node, node> result{none, none};
        bool found = false;

        forNodesWhile([&] { return !found; },
                      [&](node u) {
                          forNeighborsOf(u, [&](node v) {
                              if (!this->isDirected() && v < u)
                                  return;
                              auto uvId = edgeId(u, v);
                              if (uvId == id) {
                                  found = true;
                                  result = std::make_pair(u, v);
                              }
                          });
                      });

        return result;
    }

    index upperEdgeIdBound() const noexcept { return omega; }

    void shrinkToFit();

    void TLX_DEPRECATED(compactEdges());

    void sortEdges();

    template <class Lambda>
    void sortEdges(Lambda lambda);

    void setEdgeCount(Unsafe, count edges) { m = edges; }

    void setUpperEdgeIdBound(Unsafe, edgeid newBound) { omega = newBound; }

    void setNumberOfSelfLoops(Unsafe, count loops) { storedNumberOfSelfLoops = loops; }

    /* NODE MODIFIERS */

    node addNode();

    node addNodes(count numberOfNewNodes);

    void removeNode(node v);

    void removePartialOutEdges(Unsafe, node u) {
        assert(hasNode(u));
        outEdges[u].clear();
        if (isWeighted()) {
            outEdgeWeights[u].clear();
        }
        if (hasEdgeIds()) {
            outEdgeIds[u].clear();
        }
    }

    void removePartialInEdges(Unsafe, node u) {
        assert(hasNode(u));
        inEdges[u].clear();
        if (isWeighted()) {
            inEdgeWeights[u].clear();
        }
        if (hasEdgeIds()) {
            inEdgeIds[u].clear();
        }
    }

    bool hasNode(node v) const noexcept { return (v < z) && this->exists[v]; }

    void restoreNode(node v);

    count degree(node v) const {
        assert(hasNode(v));
        return outEdges[v].size();
    }

    count degreeIn(node v) const {
        assert(hasNode(v));
        return directed ? inEdges[v].size() : outEdges[v].size();
    }

    count degreeOut(node v) const { return degree(v); }

    bool isIsolated(node v) const {
        if (!exists[v])
            throw std::runtime_error("Error, the node does not exist!");
        return outEdges[v].empty() && (!directed || inEdges[v].empty());
    }

    edgeweight weightedDegree(node u, bool countSelfLoopsTwice = false) const;

    edgeweight weightedDegreeIn(node u, bool countSelfLoopsTwice = false) const;

    /* EDGE MODIFIERS */

    bool addEdge(node u, node v, edgeweight ew = defaultEdgeWeight, bool checkMultiEdge = false);

    bool addPartialEdge(Unsafe, node u, node v, edgeweight ew = defaultEdgeWeight,
                        uint64_t index = 0, bool checkForMultiEdges = false);

    bool addPartialInEdge(Unsafe, node u, node v, edgeweight ew = defaultEdgeWeight,
                          uint64_t index = 0, bool checkForMultiEdges = false);

    bool addPartialOutEdge(Unsafe, node u, node v, edgeweight ew = defaultEdgeWeight,
                           uint64_t index = 0, bool checkForMultiEdges = false);

    void setKeepEdgesSorted(bool sorted = true) { maintainSortedEdges = sorted; }

    void setMaintainCompactEdges(bool compact = true) { maintainCompactEdges = compact; }

    bool getKeepEdgesSorted() const noexcept { return maintainSortedEdges; }

    /*
     * Returns true if edges are currently being compacted when removeEdge() is called.
     */
    bool getMaintainCompactEdges() const noexcept { return maintainCompactEdges; }

    void removeEdge(node u, node v);

    void removeAllEdges();

    template <typename Condition>
    std::pair<count, count> removeAdjacentEdges(node u, Condition condition, bool edgesIn = false);

    void removeSelfLoops();

    void removeMultiEdges();

    void swapEdge(node s1, node t1, node s2, node t2);

    bool hasEdge(node u, node v) const noexcept;

    /* GLOBAL PROPERTIES */

    bool isWeighted() const noexcept { return weighted; }

    bool isDirected() const noexcept { return directed; }

    bool isEmpty() const noexcept { return !n; }

    count numberOfNodes() const noexcept { return n; }

    count numberOfEdges() const noexcept { return m; }

    count numberOfSelfLoops() const noexcept { return storedNumberOfSelfLoops; }

    index upperNodeIdBound() const noexcept { return z; }

    bool checkConsistency() const;

    /* DYNAMICS */

    void timeStep() {
        WARN("Graph::timeStep should not be used and will be deprecated in the future.");
        t++;
    }

    count time() {
        WARN("Graph::time should not be used and will be deprecated in the future.");
        return t;
    }

    edgeweight weight(node u, node v) const;

    void setWeight(node u, node v, edgeweight ew);

    void setWeightAtIthNeighbor(Unsafe, node u, index i, edgeweight ew);

    void setWeightAtIthInNeighbor(Unsafe, node u, index i, edgeweight ew);

    void increaseWeight(node u, node v, edgeweight ew);

    /* SUMS */

    edgeweight totalEdgeWeight() const noexcept;

    node getIthNeighbor(Unsafe, node u, index i) const { return outEdges[u][i]; }

    edgeweight getIthNeighborWeight(Unsafe, node u, index i) const {
        return isWeighted() ? outEdgeWeights[u][i] : defaultEdgeWeight;
    }

    NodeRange nodeRange() const noexcept { return NodeRange(*this); }

    EdgeRange edgeRange() const noexcept { return EdgeRange(*this); }

    EdgeWeightRange edgeWeightRange() const noexcept { return EdgeWeightRange(*this); }

    NeighborRange<false> neighborRange(node u) const {
        assert(exists[u]);
        return NeighborRange<false>(*this, u);
    }

    NeighborWeightRange<false> weightNeighborRange(node u) const {
        assert(isWeighted());
        assert(exists[u]);
        return NeighborWeightRange<false>(*this, u);
    }

    NeighborRange<true> inNeighborRange(node u) const {
        assert(isDirected());
        assert(exists[u]);
        return NeighborRange<true>(*this, u);
    }

    NeighborWeightRange<true> weightInNeighborRange(node u) const {
        assert(isDirected() && isWeighted());
        assert(exists[u]);
        return NeighborWeightRange<true>(*this, u);
    }

    index indexOfNeighbor(node u, node v) const { return indexInOutEdgeArray(u, v); }

    node getIthNeighbor(node u, index i) const {
        if (!hasNode(u) || i >= outEdges[u].size())
            return none;
        return outEdges[u][i];
    }

    node getIthInNeighbor(node u, index i) const {
        if (!hasNode(u) || i >= inEdges[u].size())
            return none;
        return inEdges[u][i];
    }

    edgeweight getIthNeighborWeight(node u, index i) const {
        if (!hasNode(u) || i >= outEdges[u].size())
            return nullWeight;
        return isWeighted() ? outEdgeWeights[u][i] : defaultEdgeWeight;
    }

    std::pair<node, edgeweight> getIthNeighborWithWeight(node u, index i) const {
        if (!hasNode(u) || i >= outEdges[u].size())
            return {none, none};
        return getIthNeighborWithWeight(unsafe, u, i);
    }

    std::pair<node, edgeweight> getIthNeighborWithWeight(Unsafe, node u, index i) const {
        if (!isWeighted())
            return {outEdges[u][i], defaultEdgeWeight};
        return {outEdges[u][i], outEdgeWeights[u][i]};
    }

    std::pair<node, edgeid> getIthNeighborWithId(node u, index i) const {
        assert(hasEdgeIds());
        if (!hasNode(u) || i >= outEdges[u].size())
            return {none, none};
        return {outEdges[u][i], outEdgeIds[u][i]};
    }

    /* NODE ITERATORS */

    template <typename L>
    void forNodes(L handle) const;

    template <typename L>
    void parallelForNodes(L handle) const;

    template <typename C, typename L>
    void forNodesWhile(C condition, L handle) const;

    template <typename L>
    void forNodesInRandomOrder(L handle) const;

    template <typename L>
    void balancedParallelForNodes(L handle) const;

    template <typename L>
    void forNodePairs(L handle) const;

    template <typename L>
    void parallelForNodePairs(L handle) const;

    /* EDGE ITERATORS */

    template <typename L>
    void forEdges(L handle) const;

    template <typename L>
    void parallelForEdges(L handle) const;

    /* NEIGHBORHOOD ITERATORS */

    template <typename L>
    void forNeighborsOf(node u, L handle) const;

    template <typename L>
    void forEdgesOf(node u, L handle) const;

    template <typename L>
    void forInNeighborsOf(node u, L handle) const;

    template <typename L>
    void forInEdgesOf(node u, L handle) const;

    /* REDUCTION ITERATORS */

    template <typename L>
    double parallelSumForNodes(L handle) const;

    template <typename L>
    double parallelSumForEdges(L handle) const;
};

/* NODE ITERATORS */

template <typename L>
void Graph::forNodes(L handle) const {
    for (node v = 0; v < z; ++v) {
        if (exists[v]) {
            handle(v);
        }
    }
}

template <typename L>
void Graph::parallelForNodes(L handle) const {
#pragma omp parallel for
    for (omp_index v = 0; v < static_cast<omp_index>(z); ++v) {
        if (exists[v]) {
            handle(v);
        }
    }
}

template <typename C, typename L>
void Graph::forNodesWhile(C condition, L handle) const {
    for (node v = 0; v < z; ++v) {
        if (exists[v]) {
            if (!condition()) {
                break;
            }
            handle(v);
        }
    }
}

template <typename L>
void Graph::forNodesInRandomOrder(L handle) const {
    std::vector<node> randVec;
    randVec.reserve(numberOfNodes());
    forNodes([&](node u) { randVec.push_back(u); });
    std::ranges::shuffle(randVec, Aux::Random::getURNG());
    for (node v : randVec) {
        handle(v);
    }
}

template <typename L>
void Graph::balancedParallelForNodes(L handle) const {
// TODO: define min block size (and test it!)
#pragma omp parallel for schedule(guided)
    for (omp_index v = 0; v < static_cast<omp_index>(z); ++v) {
        if (exists[v]) {
            handle(v);
        }
    }
}

template <typename L>
void Graph::forNodePairs(L handle) const {
    for (node u = 0; u < z; ++u) {
        if (exists[u]) {
            for (node v = u + 1; v < z; ++v) {
                if (exists[v]) {
                    handle(u, v);
                }
            }
        }
    }
}

template <typename L>
void Graph::parallelForNodePairs(L handle) const {
#pragma omp parallel for schedule(guided)
    for (omp_index u = 0; u < static_cast<omp_index>(z); ++u) {
        if (exists[u]) {
            for (node v = u + 1; v < z; ++v) {
                if (exists[v]) {
                    handle(u, v);
                }
            }
        }
    }
}

/* EDGE ITERATORS */

/* HELPERS */

template <typename T>
void erase(node u, index idx, std::vector<std::vector<T>> &vec);
// implementation for weighted == true
template <bool hasWeights>
inline edgeweight Graph::getOutEdgeWeight(node u, index i) const {
    return outEdgeWeights[u][i];
}

// implementation for weighted == false
template <>
inline edgeweight Graph::getOutEdgeWeight<false>(node, index) const {
    return defaultEdgeWeight;
}

// implementation for weighted == true
template <bool hasWeights>
inline edgeweight Graph::getInEdgeWeight(node u, index i) const {
    return inEdgeWeights[u][i];
}

// implementation for weighted == false
template <>
inline edgeweight Graph::getInEdgeWeight<false>(node, index) const {
    return defaultEdgeWeight;
}

// implementation for hasEdgeIds == true
template <bool graphHasEdgeIds>
inline edgeid Graph::getOutEdgeId(node u, index i) const {
    return outEdgeIds[u][i];
}

// implementation for hasEdgeIds == false
template <>
inline edgeid Graph::getOutEdgeId<false>(node, index) const {
    return none;
}

// implementation for hasEdgeIds == true
template <bool graphHasEdgeIds>
inline edgeid Graph::getInEdgeId(node u, index i) const {
    return inEdgeIds[u][i];
}

// implementation for hasEdgeIds == false
template <>
inline edgeid Graph::getInEdgeId<false>(node, index) const {
    return none;
}

// implementation for graphIsDirected == true
template <bool graphIsDirected>
inline bool Graph::useEdgeInIteration(node /* u */, node /* v */) const {
    return true;
}

// implementation for graphIsDirected == false
template <>
inline bool Graph::useEdgeInIteration<false>(node u, node v) const {
    return u >= v;
}

template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
inline void Graph::forOutEdgesOfImpl(node u, L handle) const {
    for (index i = 0; i < outEdges[u].size(); ++i) {
        node v = outEdges[u][i];

        if (useEdgeInIteration<graphIsDirected>(u, v)) {
            edgeLambda<L>(handle, u, v, getOutEdgeWeight<hasWeights>(u, i),
                          getOutEdgeId<graphHasEdgeIds>(u, i));
        }
    }
}

template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
inline void Graph::forInEdgesOfImpl(node u, L handle) const {
    if (graphIsDirected) {
        for (index i = 0; i < inEdges[u].size(); i++) {
            node v = inEdges[u][i];

            if (useEdgeInIteration<true>(u, v)) {
                edgeLambda<L>(handle, u, v, getInEdgeWeight<hasWeights>(u, i),
                              getInEdgeId<graphHasEdgeIds>(u, i));
            }
        }
    } else {
        for (index i = 0; i < outEdges[u].size(); ++i) {
            node v = outEdges[u][i];

            if (useEdgeInIteration<true>(u, v)) {
                edgeLambda<L>(handle, u, v, getOutEdgeWeight<hasWeights>(u, i),
                              getOutEdgeId<graphHasEdgeIds>(u, i));
            }
        }
    }
}

template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
inline void Graph::forEdgeImpl(L handle) const {
    for (node u = 0; u < z; ++u) {
        forOutEdgesOfImpl<graphIsDirected, hasWeights, graphHasEdgeIds, L>(u, handle);
    }
}

template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
inline void Graph::parallelForEdgesImpl(L handle) const {
#pragma omp parallel for schedule(guided)
    for (omp_index u = 0; u < static_cast<omp_index>(z); ++u) {
        forOutEdgesOfImpl<graphIsDirected, hasWeights, graphHasEdgeIds, L>(u, handle);
    }
}

template <bool graphIsDirected, bool hasWeights, bool graphHasEdgeIds, typename L>
inline double Graph::parallelSumForEdgesImpl(L handle) const {
    double sum = 0.0;

#pragma omp parallel for reduction(+ : sum)
    for (omp_index u = 0; u < static_cast<omp_index>(z); ++u) {
        for (index i = 0; i < outEdges[u].size(); ++i) {
            node v = outEdges[u][i];

            // undirected, do not iterate over edges twice
            // {u, v} instead of (u, v); if v == none, u > v is not fulfilled
            if (useEdgeInIteration<graphIsDirected>(u, v)) {
                sum += edgeLambda<L>(handle, u, v, getOutEdgeWeight<hasWeights>(u, i),
                                     getOutEdgeId<graphHasEdgeIds>(u, i));
            }
        }
    }

    return sum;
}

template <typename L>
void Graph::forEdges(L handle) const {
    switch (weighted + 2 * directed + 4 * edgesIndexed) {
    case 0: // unweighted, undirected, no edgeIds
        forEdgeImpl<false, false, false, L>(handle);
        break;

    case 1: // weighted,   undirected, no edgeIds
        forEdgeImpl<false, true, false, L>(handle);
        break;

    case 2: // unweighted, directed, no edgeIds
        forEdgeImpl<true, false, false, L>(handle);
        break;

    case 3: // weighted, directed, no edgeIds
        forEdgeImpl<true, true, false, L>(handle);
        break;

    case 4: // unweighted, undirected, with edgeIds
        forEdgeImpl<false, false, true, L>(handle);
        break;

    case 5: // weighted,   undirected, with edgeIds
        forEdgeImpl<false, true, true, L>(handle);
        break;

    case 6: // unweighted, directed, with edgeIds
        forEdgeImpl<true, false, true, L>(handle);
        break;

    case 7: // weighted,   directed, with edgeIds
        forEdgeImpl<true, true, true, L>(handle);
        break;
    }
}

template <typename L>
void Graph::parallelForEdges(L handle) const {
    switch (weighted + 2 * directed + 4 * edgesIndexed) {
    case 0: // unweighted, undirected, no edgeIds
        parallelForEdgesImpl<false, false, false, L>(handle);
        break;

    case 1: // weighted,   undirected, no edgeIds
        parallelForEdgesImpl<false, true, false, L>(handle);
        break;

    case 2: // unweighted, directed, no edgeIds
        parallelForEdgesImpl<true, false, false, L>(handle);
        break;

    case 3: // weighted, directed, no edgeIds
        parallelForEdgesImpl<true, true, false, L>(handle);
        break;

    case 4: // unweighted, undirected, with edgeIds
        parallelForEdgesImpl<false, false, true, L>(handle);
        break;

    case 5: // weighted,   undirected, with edgeIds
        parallelForEdgesImpl<false, true, true, L>(handle);
        break;

    case 6: // unweighted, directed, with edgeIds
        parallelForEdgesImpl<true, false, true, L>(handle);
        break;

    case 7: // weighted,   directed, with edgeIds
        parallelForEdgesImpl<true, true, true, L>(handle);
        break;
    }
}

/* NEIGHBORHOOD ITERATORS */

template <typename L>
void Graph::forNeighborsOf(node u, L handle) const {
    forEdgesOf(u, handle);
}

template <typename L>
void Graph::forEdgesOf(node u, L handle) const {
    switch (weighted + 2 * edgesIndexed) {
    case 0: // not weighted, no edge ids
        forOutEdgesOfImpl<true, false, false, L>(u, handle);
        break;

    case 1: // weighted, no edge ids
        forOutEdgesOfImpl<true, true, false, L>(u, handle);
        break;

    case 2: // not weighted, with edge ids
        forOutEdgesOfImpl<true, false, true, L>(u, handle);
        break;

    case 3: // weighted, with edge ids
        forOutEdgesOfImpl<true, true, true, L>(u, handle);
        break;
    }
}

template <typename L>
void Graph::forInNeighborsOf(node u, L handle) const {
    forInEdgesOf(u, handle);
}

template <typename L>
void Graph::forInEdgesOf(node u, L handle) const {
    switch (weighted + 2 * directed + 4 * edgesIndexed) {
    case 0: // unweighted, undirected, no edge ids
        forInEdgesOfImpl<false, false, false, L>(u, handle);
        break;

    case 1: // weighted, undirected, no edge ids
        forInEdgesOfImpl<false, true, false, L>(u, handle);
        break;

    case 2: // unweighted, directed, no edge ids
        forInEdgesOfImpl<true, false, false, L>(u, handle);
        break;

    case 3: // weighted, directed, no edge ids
        forInEdgesOfImpl<true, true, false, L>(u, handle);
        break;

    case 4: // unweighted, undirected, with edge ids
        forInEdgesOfImpl<false, false, true, L>(u, handle);
        break;

    case 5: // weighted, undirected, with edge ids
        forInEdgesOfImpl<false, true, true, L>(u, handle);
        break;

    case 6: // unweighted, directed, with edge ids
        forInEdgesOfImpl<true, false, true, L>(u, handle);
        break;

    case 7: // weighted, directed, with edge ids
        forInEdgesOfImpl<true, true, true, L>(u, handle);
        break;
    }
}

/* REDUCTION ITERATORS */

template <typename L>
double Graph::parallelSumForNodes(L handle) const {
    double sum = 0.0;

#pragma omp parallel for reduction(+ : sum)
    for (omp_index v = 0; v < static_cast<omp_index>(z); ++v) {
        if (exists[v]) {
            sum += handle(v);
        }
    }

    return sum;
}

template <typename L>
double Graph::parallelSumForEdges(L handle) const {
    double sum = 0.0;

    switch (weighted + 2 * directed + 4 * edgesIndexed) {
    case 0: // unweighted, undirected, no edge ids
        sum = parallelSumForEdgesImpl<false, false, false, L>(handle);
        break;

    case 1: // weighted,   undirected, no edge ids
        sum = parallelSumForEdgesImpl<false, true, false, L>(handle);
        break;

    case 2: // unweighted, directed, no edge ids
        sum = parallelSumForEdgesImpl<true, false, false, L>(handle);
        break;

    case 3: // weighted,   directed, no edge ids
        sum = parallelSumForEdgesImpl<true, true, false, L>(handle);
        break;

    case 4: // unweighted, undirected, with edge ids
        sum = parallelSumForEdgesImpl<false, false, true, L>(handle);
        break;

    case 5: // weighted,   undirected, with edge ids
        sum = parallelSumForEdgesImpl<false, true, true, L>(handle);
        break;

    case 6: // unweighted, directed, with edge ids
        sum = parallelSumForEdgesImpl<true, false, true, L>(handle);
        break;

    case 7: // weighted,   directed, with edge ids
        sum = parallelSumForEdgesImpl<true, true, true, L>(handle);
        break;
    }

    return sum;
}

/* EDGE MODIFIERS */

template <typename Condition>
std::pair<count, count> Graph::removeAdjacentEdges(node u, Condition condition, bool edgesIn) {
    count removedEdges = 0;
    count removedSelfLoops = 0;

    // For directed graphs, this function is supposed to be called twice: one to remove out-edges,
    // and one to remove in-edges.
    auto &edges_ = edgesIn ? inEdges[u] : outEdges[u];
    for (index vi = 0; vi < edges_.size();) {
        if (condition(edges_[vi])) {
            const auto isSelfLoop = (edges_[vi] == u);
            removedSelfLoops += isSelfLoop;
            removedEdges += !isSelfLoop;
            edges_[vi] = edges_.back();
            edges_.pop_back();
            if (isWeighted()) {
                auto &weights_ = edgesIn ? inEdgeWeights[u] : outEdgeWeights[u];
                weights_[vi] = weights_.back();
                weights_.pop_back();
            }
            if (hasEdgeIds()) {
                auto &edgeIds_ = edgesIn ? inEdgeIds[u] : outEdgeIds[u];
                edgeIds_[vi] = edgeIds_.back();
                edgeIds_.pop_back();
            }
        } else {
            ++vi;
        }
    }

    return {removedEdges, removedSelfLoops};
}

template <class Lambda>
void Graph::sortEdges(Lambda lambda) {

    std::vector<std::vector<index>> indicesGlobal(omp_get_max_threads());

    const auto sortAdjacencyArrays = [&](node u, std::vector<node> &adjList,
                                         std::vector<edgeweight> &weights,
                                         std::vector<edgeid> &edgeIds) -> void {
        auto &indices = indicesGlobal[omp_get_thread_num()];
        if (adjList.size() > indices.size())
            indices.resize(adjList.size());

        const auto indicesEnd =
            indices.begin()
            + static_cast<
                std::iterator_traits<std::vector<index>::const_iterator>::difference_type>(
                adjList.size());
        std::iota(indices.begin(), indicesEnd, 0);

        if (isWeighted()) {
            if (hasEdgeIds())
                std::sort(indices.begin(), indicesEnd, [&](auto a, auto b) -> bool {
                    return lambda(WeightedEdgeWithId{u, adjList[a], weights[a], edgeIds[a]},
                                  WeightedEdgeWithId{u, adjList[b], weights[b], edgeIds[b]});
                });
            else
                std::sort(indices.begin(), indicesEnd, [&](auto a, auto b) -> bool {
                    return lambda(WeightedEdgeWithId{u, adjList[a], weights[a], 0},
                                  WeightedEdgeWithId{u, adjList[b], weights[b], 0});
                });
        } else if (hasEdgeIds())
            std::sort(indices.begin(), indicesEnd, [&](auto a, auto b) -> bool {
                return lambda(WeightedEdgeWithId{u, adjList[a], defaultEdgeWeight, edgeIds[a]},
                              WeightedEdgeWithId{u, adjList[b], defaultEdgeWeight, edgeIds[b]});
            });
        else
            std::sort(indices.begin(), indicesEnd, [&](auto a, auto b) -> bool {
                return lambda(WeightedEdgeWithId{u, adjList[a], defaultEdgeWeight, 0},
                              WeightedEdgeWithId{u, adjList[b], defaultEdgeWeight, 0});
            });

        Aux::ArrayTools::applyPermutation(adjList.begin(), adjList.end(), indices.begin());

        if (isWeighted())
            Aux::ArrayTools::applyPermutation(weights.begin(), weights.end(), indices.begin());

        if (hasEdgeIds())
            Aux::ArrayTools::applyPermutation(edgeIds.begin(), edgeIds.end(), indices.begin());
    };

    balancedParallelForNodes([&](const node u) {
        if (degree(u) < 2)
            return;

        std::vector<edgeweight> dummyEdgeWeights;
        std::vector<edgeid> dummyEdgeIds;
        sortAdjacencyArrays(u, outEdges[u], isWeighted() ? outEdgeWeights[u] : dummyEdgeWeights,
                            hasEdgeIds() ? outEdgeIds[u] : dummyEdgeIds);

        if (isDirected())
            sortAdjacencyArrays(u, inEdges[u], isWeighted() ? inEdgeWeights[u] : dummyEdgeWeights,
                                hasEdgeIds() ? inEdgeIds[u] : dummyEdgeIds);
    });
}

} /* namespace NetworKit */

#endif // NETWORKIT_GRAPH_GRAPH_HPP_