↰ Return to documentation for file (include/networkit/centrality/KadabraBetweenness.hpp
)
/*
* KadabraBetweenness.hpp
*
* Created on: 18.07.2018
* Authors: Eugenio Angriman <angrimae@hu-berlin.de>
* Alexander van der Grinten <avdgrinten@hu-berlin.de>
*/
#ifndef NETWORKIT_CENTRALITY_KADABRA_BETWEENNESS_HPP_
#define NETWORKIT_CENTRALITY_KADABRA_BETWEENNESS_HPP_
#include <atomic>
#include <memory>
#include <random>
#include <ranges>
#include <vector>
#include <networkit/auxiliary/SortedList.hpp>
#include <networkit/base/Algorithm.hpp>
#include <networkit/components/ConnectedComponents.hpp>
#include <networkit/graph/Graph.hpp>
namespace NetworKit {
class StateFrame {
public:
StateFrame(const count size) { apx.assign(size, 0); };
count nPairs = 0;
count epoch = 0;
std::vector<count> apx;
void reset(count newEpoch) {
std::ranges::fill(apx, 0);
nPairs = 0;
epoch = newEpoch;
}
};
class Status {
public:
Status(count k);
const count k;
std::vector<node> top;
std::vector<double> approxTop;
std::vector<bool> finished;
std::vector<double> bet;
std::vector<double> errL;
std::vector<double> errU;
};
class SpSampler {
private:
const Graph &G;
const ConnectedComponents &cc;
public:
SpSampler(const Graph &G, const ConnectedComponents &cc);
void randomPath(StateFrame *curFrame);
StateFrame *frame;
std::mt19937_64 rng;
std::uniform_int_distribution<node> distr;
private:
std::vector<uint8_t> timestamp;
uint8_t globalTS = 1;
static constexpr uint8_t stampMask = 0x7F;
static constexpr uint8_t ballMask = 0x80;
std::vector<count> dist;
std::vector<count> nPaths;
std::vector<node> q;
std::vector<std::pair<node, node>> spEdges;
inline node randomNode() const;
void backtrackPath(node source, node target, node start);
void resetSampler(count endQ);
count getDegree(const Graph &graph, node y, bool useDegreeIn);
};
class KadabraBetweenness : public Algorithm {
public:
// See EUROPAR'19 paper for the selection of these parameters.
unsigned int baseItersPerStep = 1000;
double itersPerStepExp = 1.33;
KadabraBetweenness(const Graph &G, double err = 0.01, double delta = 0.1,
bool deterministic = false, count k = 0, count unionSample = 0,
count startFactor = 100);
void run() override;
std::vector<std::pair<node, double>> ranking() const;
std::vector<node> topkNodesList() const {
assureFinished();
return topkNodes;
}
std::vector<double> topkScoresList() const {
assureFinished();
return topkScores;
}
std::vector<double> scores() const {
assureFinished();
return approxSum;
}
count getNumberOfIterations() const {
assureFinished();
return nPairs;
}
double getOmega() const {
assureFinished();
return omega;
}
count maxAllocatedFrames() const {
assureFinished();
return *std::ranges::max_element(maxFrames);
}
protected:
const Graph &G;
const double delta, err;
const bool deterministic;
const count k, startFactor;
count unionSample;
count nPairs;
const bool absolute;
double deltaLMinGuess, deltaUMinGuess, omega;
std::atomic<int32_t> epochToRead;
int32_t epochRead;
count seed0, seed1;
std::vector<count> maxFrames;
std::vector<node> topkNodes;
std::vector<double> topkScores;
std::vector<std::pair<node, double>> rankingVector;
std::vector<std::atomic<StateFrame *>> epochFinished;
std::vector<SpSampler> samplerVec;
std::unique_ptr<Aux::SortedList> top;
std::unique_ptr<ConnectedComponents> cc;
std::vector<double> approxSum;
std::vector<double> deltaLGuess;
std::vector<double> deltaUGuess;
std::atomic<bool> stop;
void init();
void computeDeltaGuess();
void computeBetErr(Status *status, std::vector<double> &bet, std::vector<double> &errL,
std::vector<double> &errU) const;
bool computeFinished(Status *status) const;
void getStatus(Status *status, bool parallel = false) const;
void computeApproxParallel(const std::vector<StateFrame> &firstFrames);
double computeF(double btilde, count iterNum, double deltaL) const;
double computeG(double btilde, count iterNum, double deltaU) const;
void fillResult();
void checkConvergence(Status &status);
void fillPQ() {
for (count i = 0; i < G.upperNodeIdBound(); ++i) {
top->insert(i, approxSum[i]);
}
}
};
inline std::vector<std::pair<node, double>> KadabraBetweenness::ranking() const {
assureFinished();
std::vector<std::pair<node, double>> result(topkNodes.size());
#pragma omp parallel for
for (omp_index i = 0; i < static_cast<omp_index>(result.size()); ++i) {
result[i] = std::make_pair(topkNodes[i], topkScores[i]);
}
return result;
}
} // namespace NetworKit
#endif // NETWORKIT_CENTRALITY_KADABRA_BETWEENNESS_HPP_