↰ Return to documentation for file (include/networkit/centrality/ApproxGroupBetweenness.hpp
)
/*
* ApproxGroupBetweenness.hpp
*
* Created on: 13.03.2018
* Author: Marvin Pogoda
*/
#ifndef NETWORKIT_CENTRALITY_APPROX_GROUP_BETWEENNESS_HPP_
#define NETWORKIT_CENTRALITY_APPROX_GROUP_BETWEENNESS_HPP_
#include <omp.h>
#include <networkit/base/Algorithm.hpp>
#include <networkit/distance/BFS.hpp>
#include <networkit/graph/Graph.hpp>
namespace NetworKit {
class ApproxGroupBetweenness final : public Algorithm {
public:
ApproxGroupBetweenness(const Graph &G, count groupSize, double epsilon);
void run() override;
std::vector<node> groupMaxBetweenness() const;
double scoreOfGroup(const std::vector<node> &S, bool normalized = false) const;
protected:
const Graph &G;
count n;
std::vector<node> maxGroup;
const count groupSize;
const double epsilon;
};
inline std::vector<node> ApproxGroupBetweenness::groupMaxBetweenness() const {
assureFinished();
return maxGroup;
}
inline double ApproxGroupBetweenness::scoreOfGroup(const std::vector<node> &S,
const bool normalized) const {
if (S.empty())
throw std::runtime_error("Error: input group is empty");
count z = G.upperNodeIdBound();
std::vector<bool> inGroup(z);
for (node u : S) {
if (!G.hasNode(u))
throw std::runtime_error("Error, input group contains nodes not in the graph");
if (inGroup[u])
WARN("Input group contains duplicate nodes!");
inGroup[u] = true;
}
std::vector<double> scorePerThread(omp_get_max_threads());
std::vector<std::vector<double>> deps(omp_get_max_threads(), std::vector<double>(n));
std::vector<BFS> bfss(omp_get_max_threads(), BFS(G, 0, true, true));
auto computeDeps = [&](node source) {
auto &dep = deps[omp_get_thread_num()];
std::fill(dep.begin(), dep.end(), 0);
BFS &bfs = bfss[omp_get_thread_num()];
bfs.setSource(source);
bfs.run();
double weight;
auto sortedNodes = bfs.getNodesSortedByDistance();
for (auto it = sortedNodes.rbegin(); it != sortedNodes.rend(); ++it) {
node target = *it;
for (node pred : bfs.getPredecessors(target)) {
(bfs.numberOfPaths(pred) / bfs.numberOfPaths(target)).ToDouble(weight);
if (inGroup[pred]) {
if (pred != source) {
scorePerThread[omp_get_thread_num()] +=
dep[pred] + weight * (1 + dep[target]);
}
} else {
dep[pred] += weight * (1 + dep[target]);
}
}
}
};
G.balancedParallelForNodes(computeDeps);
double result = 0;
for (double curScore : scorePerThread)
result += curScore;
if (normalized) {
double nPairs = static_cast<double>((z - S.size()) * (z - S.size() - 1));
if (nPairs <= 0)
return 0;
if (!G.isDirected())
nPairs /= 2;
result /= nPairs;
}
return result;
}
} /* namespace NetworKit */
#endif // NETWORKIT_CENTRALITY_APPROX_GROUP_BETWEENNESS_HPP_