Program Listing for File CSRGeneralMatrix.hpp

Return to documentation for file (include/networkit/algebraic/CSRGeneralMatrix.hpp)

/*
 * CSRGeneralMatrix.hpp
 *
 *  Created on: May 6, 2015
 *     Authors: Michael Wegner <michael.wegner@student.kit.edu>
 *              Eugenio Angriman <angrimae@hu-berlin.de>
 */

#ifndef NETWORKIT_ALGEBRAIC_CSR_GENERAL_MATRIX_HPP_
#define NETWORKIT_ALGEBRAIC_CSR_GENERAL_MATRIX_HPP_

#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <numeric>
#include <omp.h>
#include <stdexcept>
#include <vector>

#include <networkit/Globals.hpp>
#include <networkit/algebraic/AlgebraicGlobals.hpp>
#include <networkit/algebraic/Vector.hpp>
#include <networkit/graph/Graph.hpp>

#include <tlx/unused.hpp>

namespace NetworKit {

template <class ValueType>
class CSRGeneralMatrix {
    std::vector<index> rowIdx, columnIdx;
    std::vector<ValueType> nonZeros;

    count nRows, nCols;
    bool isSorted;
    ValueType zero;

    class IndexProxy {
    public:
        IndexProxy(CSRGeneralMatrix &mat, index i, index j) : Matrix{mat}, i{i}, j{j} {}

        operator const ValueType &() const {
            return const_cast<const CSRGeneralMatrix &>(Matrix)(i, j);
        }

        void operator=(double rhs) { Matrix.setValue(i, j, rhs); }

    private:
        CSRGeneralMatrix &Matrix;
        index i;
        index j;
    };

public:
    CSRGeneralMatrix()
        : rowIdx(0), columnIdx(0), nonZeros(0), nRows(0), nCols(0), isSorted(true), zero(0) {}

    CSRGeneralMatrix(count dimension, ValueType zero = 0)
        : rowIdx(dimension + 1), columnIdx(0), nonZeros(0), nRows(dimension), nCols(dimension),
          isSorted(true), zero(zero) {}

    CSRGeneralMatrix(count nRows, count nCols, ValueType zero = 0)
        : rowIdx(nRows + 1), columnIdx(0), nonZeros(0), nRows(nRows), nCols(nCols), isSorted(true),
          zero(zero) {}

    CSRGeneralMatrix(count dimension, const std::vector<Triplet> &triplets, ValueType zero = 0,
                     bool isSorted = false)
        : CSRGeneralMatrix(dimension, dimension, triplets, zero, isSorted) {}

    CSRGeneralMatrix(count nRows, count nCols, const std::vector<Triplet> &triplets,
                     ValueType zero = 0, bool isSorted = false)
        : rowIdx(nRows + 1), columnIdx(triplets.size()), nonZeros(triplets.size()), nRows(nRows),
          nCols(nCols), isSorted(isSorted), zero(zero) {

        const count nnz = triplets.size();

        for (index i = 0; i < nnz; ++i)
            rowIdx[triplets[i].row]++;

        for (index i = 0, prefixSum = 0; i < nRows; ++i) {
            count nnzInRow = rowIdx[i];
            rowIdx[i] = prefixSum;
            prefixSum += nnzInRow;
        }
        rowIdx[nRows] = nnz;

        for (index i = 0; i < nnz; ++i) {
            index row = triplets[i].row;
            index dest = rowIdx[row];

            columnIdx[dest] = triplets[i].column;
            nonZeros[dest] = triplets[i].value;

            rowIdx[row]++;
        }

        rowIdx.back() = 0;
        std::rotate(rowIdx.rbegin(), rowIdx.rbegin() + 1, rowIdx.rend());
    }

    CSRGeneralMatrix(count nRows, count nCols, const std::vector<std::vector<index>> &columnIdx,
                     const std::vector<std::vector<ValueType>> &values, ValueType zero = 0,
                     bool isSorted = false)
        : rowIdx(nRows + 1), nRows(nRows), nCols(nCols), isSorted(isSorted), zero(zero) {

        count nnz = columnIdx[0].size();
        for (index i = 1; i < columnIdx.size(); ++i) {
            rowIdx[i] = rowIdx[i - 1] + columnIdx[i - 1].size();
            nnz += columnIdx[i].size();
        }
        rowIdx[nRows] = nnz;

        this->columnIdx = std::vector<index>(nnz);
        this->nonZeros = std::vector<double>(nnz);

#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(nRows); ++i) {
            for (index k = 0; k < columnIdx[i].size(); ++k) {
                this->columnIdx[rowIdx[i] + k] = columnIdx[i][k];
                nonZeros[rowIdx[i] + k] = values[i][k];
            }
        }
    }

    CSRGeneralMatrix(count nRows, count nCols, const std::vector<index> &rowIdx,
                     const std::vector<index> &columnIdx, const std::vector<ValueType> &nonZeros,
                     ValueType zero = 0, bool isSorted = false)
        : rowIdx(rowIdx), columnIdx(columnIdx), nonZeros(nonZeros), nRows(nRows), nCols(nCols),
          isSorted(isSorted), zero(zero) {}

    CSRGeneralMatrix(const CSRGeneralMatrix &other) = default;

    CSRGeneralMatrix(CSRGeneralMatrix &&other) noexcept = default;

    ~CSRGeneralMatrix() = default;

    CSRGeneralMatrix &operator=(CSRGeneralMatrix &&other) noexcept = default;

    CSRGeneralMatrix &operator=(const CSRGeneralMatrix &other) = default;

    IndexProxy operator()(index i, index j) { return IndexProxy(*this, i, j); }

    bool operator==(const CSRGeneralMatrix &other) const {
        bool equal = nRows == other.nRows && nCols == other.nCols && zero == other.zero
                     && nnz() == other.nnz();
        if (equal)
            forNonZeroElementsInRowOrder([&](index i, index j, ValueType value) {
                if (other(i, j) != value) {
                    equal = false;
                    return;
                }
            });

        return equal;
    }

    bool isApprox(const CSRGeneralMatrix &other, const double eps = 0.01) const {
        bool equal = nRows == other.nRows && nCols == other.nCols && zero == other.zero
                     && nnz() == other.nnz();
        if (equal)
            forNonZeroElementsInRowOrder([&](index i, index j, ValueType value) {
                if (std::abs(other(i, j) - value) > eps) {
                    equal = false;
                    return;
                }
            });

        return equal;
    }

    bool operator!=(const CSRGeneralMatrix &other) const { return !((*this) == other); }

    count numberOfRows() const noexcept { return nRows; }

    count numberOfColumns() const noexcept { return nCols; }

    ValueType getZero() const noexcept { return zero; }

    count nnzInRow(const index i) const {
        assert(i < nRows);
        return rowIdx[i + 1] - rowIdx[i];
    }

    count nnz() const noexcept { return nonZeros.size(); }

    const ValueType &operator()(index i, index j) const {
        assert(i < nRows);
        assert(j < nCols);

        if (rowIdx[i] == rowIdx[i + 1])
            return zero; // no non-zero value is present in this row

        if (!sorted()) {
            for (index k = rowIdx[i]; k < rowIdx[i + 1]; ++k) {
                if (columnIdx[k] == j) {
                    return nonZeros[k];
                }
            }
        } else {
            // finding the correct index where j should be inserted
            auto it = std::lower_bound(columnIdx.begin() + rowIdx[i],
                                       columnIdx.begin() + rowIdx[i + 1], j);
            index colIdx = static_cast<index>(it - columnIdx.begin());

            if (it == columnIdx.end())
                return zero;
            else if (*it == j) {
                return nonZeros[colIdx];
            }
        }
        return zero;
    }

    void setValue(index i, index j, ValueType value) {
        assert(i < nRows);
        assert(j < nCols);

        index colIdx = none;

        if (!isSorted) {
            for (index k = rowIdx[i]; k < rowIdx[i + 1]; ++k) {
                if (columnIdx[k] == j) {
                    colIdx = k;
                }
            }
            if (colIdx != none) {
                if (value != zero) { // update existing value
                    nonZeros[colIdx] = value;
                } else { // remove value if set to zero
                    columnIdx.erase(columnIdx.begin() + colIdx);
                    nonZeros.erase(nonZeros.begin() + colIdx);

                    for (index k = i + 1; k < rowIdx.size(); ++k) {
                        --rowIdx[k];
                    }
                }
            } else if (value != zero) { // don't add zero values
                columnIdx.emplace(std::next(columnIdx.begin(), rowIdx[i + 1]), j);
                nonZeros.emplace(std::next(nonZeros.begin(), rowIdx[i + 1]), value);

                // update rowIdx
                for (index k = i + 1; k < rowIdx.size(); ++k) {
                    ++rowIdx[k];
                }
            }
        } else {
            // finding the correct index where j should be inserted
            auto it = std::lower_bound(columnIdx.begin() + rowIdx[i],
                                       columnIdx.begin() + rowIdx[i + 1], j);
            colIdx = static_cast<index>(it - columnIdx.begin());

            if (colIdx < rowIdx[i + 1] && columnIdx[colIdx] == j) {
                if (value != zero) { // update existing value
                    nonZeros[colIdx] = value;
                } else { // remove value if set to zero
                    columnIdx.erase(columnIdx.begin() + colIdx);
                    nonZeros.erase(nonZeros.begin() + colIdx);

                    for (index k = i + 1; k < rowIdx.size(); ++k) {
                        --rowIdx[k];
                    }
                }
            } else if (value != zero) { // don't add zero values
                columnIdx.emplace(std::next(columnIdx.begin(), colIdx), j);
                nonZeros.emplace(std::next(nonZeros.begin(), colIdx), value);

                // update rowIdx
                for (index k = i + 1; k < rowIdx.size(); ++k) {
                    ++rowIdx[k];
                }
            }
        }
        assert(this->operator()(i, j) == value);
    }

    void sort() {
#pragma omp parallel
        {
            std::vector<index> permutation(nCols);
#pragma omp for schedule(guided)
            for (omp_index i = 0; i < static_cast<omp_index>(nRows); ++i) {
                const index startOfRow = rowIdx[i], endOfRow = rowIdx[i + 1];
                const count nonZerosInRow = endOfRow - startOfRow;
                if (nonZerosInRow <= 1
                    || std::is_sorted(columnIdx.begin() + startOfRow, columnIdx.begin() + endOfRow))
                    continue;

                permutation.resize(nonZerosInRow);
                std::iota(permutation.begin(), permutation.end(), index{0});
                std::sort(permutation.begin(), permutation.end(), [&](index x, index y) {
                    return columnIdx[startOfRow + x] < columnIdx[startOfRow + y];
                });

                Aux::ArrayTools::applyPermutation(columnIdx.begin() + startOfRow,
                                                  columnIdx.begin() + endOfRow,
                                                  permutation.begin());

                Aux::ArrayTools::applyPermutation(nonZeros.begin() + startOfRow,
                                                  nonZeros.begin() + endOfRow, permutation.begin());
            }
        }
        isSorted = true;

#ifdef NETWORKIT_SANITY_CHECKS
#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(nRows); ++i)
            assert(
                std::is_sorted(columnIdx.begin() + rowIdx[i], columnIdx.begin() + rowIdx[i + 1]));
#endif // NETWORKIT_SANITY_CHECKS
    }

    bool sorted() const noexcept { return isSorted; }

    Vector row(index i) const {
        assert(i < nRows);

        Vector row(numberOfColumns(), zero, true);
        parallelForNonZeroElementsInRow(i, [&row](index j, double value) { row[j] = value; });

        return row;
    }

    Vector column(index j) const {
        assert(j < nCols);

        Vector column(numberOfRows(), getZero());
#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(numberOfRows()); ++i)
            column[i] = (*this)(i, j);

        return column;
    }

    Vector diagonal() const {
        Vector diag(std::min(nRows, nCols), zero);

        if (sorted()) {
#pragma omp parallel for
            for (omp_index i = 0; i < static_cast<omp_index>(diag.getDimension()); ++i) {

                const auto it = std::lower_bound(columnIdx.begin() + rowIdx[i],
                                                 columnIdx.begin() + rowIdx[i + 1], i);

                if (it != columnIdx.end() && *it == static_cast<index>(i))
                    diag[i] = nonZeros[it - columnIdx.begin()];
            }
        } else {
#pragma omp parallel for
            for (omp_index i = 0; i < static_cast<omp_index>(diag.getDimension()); ++i) {
                diag[i] = (*this)(i, i);
            }
        }

        return diag;
    }

    CSRGeneralMatrix operator+(const CSRGeneralMatrix &other) const {
        assert(nRows == other.nRows && nCols == other.nCols);
        return CSRGeneralMatrix<ValueType>::binaryOperator(
            *this, other, [](double val1, double val2) { return val1 + val2; });
    }

    CSRGeneralMatrix &operator+=(const CSRGeneralMatrix &other) {
        assert(nRows == other.nRows && nCols == other.nCols);
        *this = CSRGeneralMatrix<ValueType>::binaryOperator(
            *this, other, [](double val1, double val2) { return val1 + val2; });
        return *this;
    }

    CSRGeneralMatrix operator-(const CSRGeneralMatrix &other) const {
        assert(nRows == other.nRows && nCols == other.nCols);
        return CSRGeneralMatrix<ValueType>::binaryOperator(
            *this, other, [](double val1, double val2) { return val1 - val2; });
    }

    CSRGeneralMatrix &operator-=(const CSRGeneralMatrix &other) {
        assert(nRows == other.nRows && nCols == other.nCols);
        *this = CSRGeneralMatrix<ValueType>::binaryOperator(
            *this, other, [](double val1, double val2) { return val1 - val2; });
        return *this;
    }

    CSRGeneralMatrix operator*(const ValueType &scalar) const {
        return CSRGeneralMatrix(*this) *= scalar;
    }

    CSRGeneralMatrix &operator*=(const ValueType &scalar) {
#pragma omp parallel for
        for (omp_index k = 0; k < static_cast<omp_index>(nonZeros.size()); ++k)
            nonZeros[k] *= scalar;

        return *this;
    }

    Vector operator*(const Vector &vector) const {
        assert(!vector.isTransposed());
        assert(nCols == vector.getDimension());

        Vector result(nRows, zero);
#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(numberOfRows()); ++i) {
            double sum = zero;
            for (index cIdx = rowIdx[i]; cIdx < rowIdx[i + 1]; ++cIdx) {
                sum += nonZeros[cIdx] * vector[columnIdx[cIdx]];
            }
            result[i] = sum;
        }

        return result;
    }

    CSRGeneralMatrix operator*(const CSRGeneralMatrix &other) const {
        assert(nCols == other.nRows);

        std::vector<index> rowIdx(numberOfRows() + 1, 0);
        std::vector<index> columnIdx;
        std::vector<double> nonZeros;

#pragma omp parallel
        {
            std::vector<int64_t> marker(other.numberOfColumns(), -1);
            count numThreads = omp_get_num_threads();
            index threadId = omp_get_thread_num();

            count chunkSize = (numberOfRows() + numThreads - 1) / numThreads;
            index chunkStart = threadId * chunkSize;
            index chunkEnd = std::min(numberOfRows(), chunkStart + chunkSize);

            for (index i = chunkStart; i < chunkEnd; ++i) {
                for (index jA = this->rowIdx[i]; jA < this->rowIdx[i + 1]; ++jA) {
                    index k = this->columnIdx[jA];
                    for (index jB = other.rowIdx[k]; jB < other.rowIdx[k + 1]; ++jB) {
                        index j = other.columnIdx[jB];
                        if (marker[j] != (int64_t)i) {
                            marker[j] = i;
                            ++rowIdx[i + 1];
                        }
                    }
                }
            }

            std::fill(marker.begin(), marker.end(), -1);

#pragma omp barrier
#pragma omp single
            {
                for (index i = 0; i < numberOfRows(); ++i)
                    rowIdx[i + 1] += rowIdx[i];

                columnIdx = std::vector<index>(rowIdx[numberOfRows()]);
                nonZeros = std::vector<double>(rowIdx[numberOfRows()]);
            }

            for (index i = chunkStart; i < chunkEnd; ++i) {
                index rowBegin = rowIdx[i];
                index rowEnd = rowBegin;

                for (index jA = this->rowIdx[i]; jA < this->rowIdx[i + 1]; ++jA) {
                    index k = this->columnIdx[jA];
                    double valA = this->nonZeros[jA];

                    for (index jB = other.rowIdx[k]; jB < other.rowIdx[k + 1]; ++jB) {
                        index j = other.columnIdx[jB];
                        double valB = other.nonZeros[jB];

                        if (marker[j] < (int64_t)rowBegin) {
                            marker[j] = rowEnd;
                            columnIdx[rowEnd] = j;
                            nonZeros[rowEnd] = valA * valB;
                            ++rowEnd;
                        } else {
                            nonZeros[marker[j]] += valA * valB;
                        }
                    }
                }
            }
        }

        CSRGeneralMatrix result(numberOfRows(), other.numberOfColumns(), rowIdx, columnIdx,
                                nonZeros);
        if (sorted() && other.sorted())
            result.sort();
        return result;
    }

    CSRGeneralMatrix operator/(const ValueType &divisor) const {
        return CSRGeneralMatrix(*this) /= divisor;
    }

    CSRGeneralMatrix &operator/=(const ValueType &divisor) { return *this *= 1.0 / divisor; }

    template <typename L>
    static CSRGeneralMatrix binaryOperator(const CSRGeneralMatrix &A, const CSRGeneralMatrix &B,
                                           L binaryOp);

    static CSRGeneralMatrix mTmMultiply(const CSRGeneralMatrix &A, const CSRGeneralMatrix &B) {
        assert(A.nRows == B.nRows);

        std::vector<std::vector<index>> columnIdx(A.numberOfColumns());
        std::vector<std::vector<double>> values(A.numberOfColumns());

        for (index k = 0; k < A.numberOfRows(); ++k) {
            A.forNonZeroElementsInRow(k, [&](index i, double vA) {
                B.forNonZeroElementsInRow(k, [&](index j, double vB) {
                    bool found = false;
                    for (index l = 0; l < columnIdx[i].size(); ++l) {
                        if (columnIdx[i][l] == j) {
                            values[i][l] += vA * vB;
                            found = true;
                            break;
                        }
                    }

                    if (!found) {
                        columnIdx[i].push_back(j);
                        values[i].push_back(vA * vB);
                    }
                });
            });
        }

        return CSRGeneralMatrix(A.nCols, B.nCols, columnIdx, values);
    }

    static CSRGeneralMatrix mmTMultiply(const CSRGeneralMatrix &A, const CSRGeneralMatrix &B) {
        assert(A.nCols == B.nCols);

        std::vector<std::vector<index>> columnIdx(A.numberOfRows());
        std::vector<std::vector<double>> values(A.numberOfRows());

        for (index i = 0; i < A.numberOfRows(); ++i) {
            A.forNonZeroElementsInRow(i, [&](index k, double vA) {
                for (index j = 0; j < B.numberOfRows(); ++j) {
                    double vB = B(j, k);
                    if (vB != A.zero) {
                        bool found = false;
                        for (index l = 0; l < columnIdx[i].size(); ++l) {
                            if (columnIdx[i][l] == j) {
                                values[i][l] += vA * vB;
                                found = true;
                                break;
                            }
                        }

                        if (!found) {
                            columnIdx[i].push_back(j);
                            values[i].push_back(vA * vB);
                        }
                    }
                }
            });
        }

        return CSRGeneralMatrix(A.nRows, B.nRows, columnIdx, values);
    }

    static Vector mTvMultiply(const CSRGeneralMatrix &matrix, const Vector &vector) {
        assert(matrix.nRows == vector.getDimension() && !vector.isTransposed());

        Vector result(matrix.numberOfColumns(), 0);
        for (index k = 0; k < matrix.numberOfRows(); ++k) {
            matrix.forNonZeroElementsInRow(
                k, [&](index j, double value) { result[j] += value * vector[k]; });
        }

        return result;
    }

    CSRGeneralMatrix transpose() const {
        std::vector<index> rowIdx(numberOfColumns() + 1);
        for (index i = 0; i < nnz(); ++i)
            ++rowIdx[columnIdx[i] + 1];

        for (index i = 0; i < numberOfColumns(); ++i)
            rowIdx[i + 1] += rowIdx[i];

        std::vector<index> columnIdx(rowIdx[numberOfColumns()]);
        std::vector<double> nonZeros(rowIdx[numberOfColumns()]);

        for (index i = 0; i < numberOfRows(); ++i) {
            for (index j = this->rowIdx[i]; j < this->rowIdx[i + 1]; ++j) {
                index colIdx = this->columnIdx[j];
                columnIdx[rowIdx[colIdx]] = i;
                nonZeros[rowIdx[colIdx]] = this->nonZeros[j];
                ++rowIdx[colIdx];
            }
        }
        index shift = 0;
        for (index i = 0; i < numberOfColumns(); ++i) {
            index temp = rowIdx[i];
            rowIdx[i] = shift;
            shift = temp;
        }
        rowIdx[numberOfColumns()] = nonZeros.size();

        return CSRGeneralMatrix(nCols, nRows, rowIdx, columnIdx, nonZeros, getZero());
    }

    CSRGeneralMatrix extract(const std::vector<index> &rowIndices,
                             const std::vector<index> &columnIndices) const {
        std::vector<Triplet> triplets;
        std::vector<std::vector<index>> columnMapping(numberOfColumns());
        for (index j = 0; j < columnIndices.size(); ++j)
            columnMapping[columnIndices[j]].push_back(j);

        bool sorted = true;
        for (index i = 0; i < rowIndices.size(); ++i) {
            Triplet last = {i, 0, 0};
            (*this).forNonZeroElementsInRow(rowIndices[i], [&](index k, double value) {
                if (!columnMapping[k].empty()) {
                    for (index j : columnMapping[k]) {
                        if (last.row == i && last.column > j)
                            sorted = false;
                        last = {i, j, value};
                        triplets.push_back(last);
                    }
                }
            });
        }

        return CSRGeneralMatrix(rowIndices.size(), columnIndices.size(), triplets, getZero(),
                                sorted);
    }

    void assign(const std::vector<index> &rowIndices, const std::vector<index> &columnIndices,
                const CSRGeneralMatrix &source) {
        assert(rowIndices.size() == source.numberOfRows());
        assert(columnIndices.size() == source.numberOfColumns());

        for (index i = 0; i < rowIndices.size(); ++i)
            source.forElementsInRow(i, [&](index j, double value) {
                setValue(rowIndices[i], columnIndices[j], value);
            });
    }

    template <typename F>
    void apply(F unaryElementFunction);

    static CSRGeneralMatrix adjacencyMatrix(const Graph &graph, ValueType zero = 0) {
        count nonZeros = graph.isDirected() ? graph.numberOfEdges() : graph.numberOfEdges() * 2;
        std::vector<Triplet> triplets(nonZeros);
        index idx = 0;
        graph.forEdges([&](node i, node j, double val) {
            triplets[idx++] = {i, j, val};
            if (!graph.isDirected() && i != j)
                triplets[idx++] = {j, i, val};
        });

        return CSRGeneralMatrix(graph.upperNodeIdBound(), triplets, zero);
    }

    static CSRGeneralMatrix diagonalMatrix(const Vector &diagonalElements, ValueType zero = 0) {
        count nRows = diagonalElements.getDimension();
        count nCols = diagonalElements.getDimension();
        std::vector<index> rowIdx(nRows + 1, 0);
        std::iota(rowIdx.begin(), rowIdx.end(), 0);
        std::vector<index> columnIdx(nCols);
        std::vector<double> nonZeros(nCols);

#pragma omp parallel for
        for (omp_index j = 0; j < static_cast<omp_index>(nCols); ++j) {
            columnIdx[j] = j;
            nonZeros[j] = diagonalElements[j];
        }

        return CSRGeneralMatrix(nRows, nCols, rowIdx, columnIdx, nonZeros, zero);
    }

    static CSRGeneralMatrix incidenceMatrix(const Graph &graph, ValueType zero = 0) {
        if (!graph.hasEdgeIds())
            throw std::runtime_error("Graph has no edge Ids. Index edges first by "
                                     "calling graph.indexEdges()");
        std::vector<Triplet> triplets;

        if (graph.isDirected()) {
            graph.forEdges([&](node u, node v, edgeweight weight, edgeid edgeId) {
                if (u != v) {
                    edgeweight w = std::sqrt(weight);
                    triplets.push_back({u, edgeId, w});
                    triplets.push_back({v, edgeId, -w});
                }
            });
        } else {
            graph.forEdges([&](node u, node v, edgeweight weight, edgeid edgeId) {
                if (u != v) {
                    edgeweight w = std::sqrt(weight);
                    if (u < v) { // orientation: small node number -> great node number
                        triplets.push_back({u, edgeId, w});
                        triplets.push_back({v, edgeId, -w});
                    } else {
                        triplets.push_back({u, edgeId, -w});
                        triplets.push_back({v, edgeId, w});
                    }
                }
            });
        }

        return CSRGeneralMatrix(graph.upperNodeIdBound(), graph.upperEdgeIdBound(), triplets, zero);
    }

    static CSRGeneralMatrix laplacianMatrix(const Graph &graph, ValueType zero = 0) {
        std::vector<Triplet> triples;

        graph.forNodes([&](const index i) {
            double weightedDegree = 0;
            graph.forNeighborsOf(i, [&](const index j, double weight) { // - adjacency matrix
                if (i != j) // exclude diagonal since this would be subtracted by
                            // the adjacency weight
                    weightedDegree += weight;

                triples.push_back({i, j, -weight});
            });

            if (weightedDegree != 0)
                triples.push_back({i, i, weightedDegree}); // degree matrix
        });

        return CSRGeneralMatrix(graph.numberOfNodes(), triples, zero);
    }

    static CSRGeneralMatrix normalizedLaplacianMatrix(const Graph &graph, ValueType zero = 0) {
        std::vector<Triplet> triples;

        std::vector<double> weightedDegrees(graph.upperNodeIdBound(), 0);
        graph.parallelForNodes([&](const node u) { weightedDegrees[u] = graph.weightedDegree(u); });

        graph.forNodes([&](const node i) {
            graph.forNeighborsOf(i, [&](const node j, double weight) {
                if (i != j)
                    triples.push_back(
                        {i, j, -weight / std::sqrt(weightedDegrees[i] * weightedDegrees[j])});
            });

            if (weightedDegrees[i] != 0) {
                if (graph.isWeighted())
                    triples.push_back({i, i, 1 - (graph.weight(i, i)) / weightedDegrees[i]});
                else
                    triples.push_back({i, i, 1});
            }
        });

        return CSRGeneralMatrix(graph.upperNodeIdBound(), triples, zero);
    }

    template <typename L>
    void forNonZeroElementsInRow(index row, L handle) const {
        for (index k = rowIdx[row]; k < rowIdx[row + 1]; ++k)
            handle(columnIdx[k], nonZeros[k]);
    }

    template <typename L>
    void parallelForNonZeroElementsInRow(index row, L handle) const;

    template <typename L>
    void forElementsInRow(index i, L handle) const;

    template <typename L>
    void parallelForElementsInRow(index row, L handle) const;

    template <typename L>
    void forElementsInRowOrder(L handle) const;

    template <typename L>
    void parallelForElementsInRowOrder(L handle) const;

    template <typename L>
    void forNonZeroElementsInRowOrder(L handle) const;

    template <typename L>
    void parallelForNonZeroElementsInRowOrder(L handle) const;
};

template <typename ValueType>
template <typename L>
inline CSRGeneralMatrix<ValueType>
CSRGeneralMatrix<ValueType>::binaryOperator(const CSRGeneralMatrix<ValueType> &A,
                                            const CSRGeneralMatrix<ValueType> &B, L binaryOp) {
    assert(A.nRows == B.nRows && A.nCols == B.nCols);

    if (A.sorted() && B.sorted()) {
        std::vector<index> rowIdx(A.nRows + 1);
        std::vector<std::vector<index>> columns(A.nRows);
        rowIdx[0] = 0;

#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(A.nRows); ++i) {
            index k = A.rowIdx[i];
            index l = B.rowIdx[i];
            while (k < A.rowIdx[i + 1] && l < B.rowIdx[i + 1]) {
                if (A.columnIdx[k] < B.columnIdx[l]) {
                    columns[i].push_back(A.columnIdx[k]);
                    ++k;
                } else if (A.columnIdx[k] > B.columnIdx[l]) {
                    columns[i].push_back(B.columnIdx[l]);
                    ++l;
                } else { // A.columnIdx[k] == B.columnIdx[l]
                    columns[i].push_back(A.columnIdx[k]);
                    ++k;
                    ++l;
                }
                ++rowIdx[i + 1];
            }

            while (k < A.rowIdx[i + 1]) {
                columns[i].push_back(A.columnIdx[k]);
                ++k;
                ++rowIdx[i + 1];
            }

            while (l < B.rowIdx[i + 1]) {
                columns[i].push_back(B.columnIdx[l]);
                ++l;
                ++rowIdx[i + 1];
            }
        }

        for (index i = 0; i < A.nRows; ++i)
            rowIdx[i + 1] += rowIdx[i];

        count nnz = rowIdx[A.nRows];
        std::vector<index> columnIdx(nnz);
        std::vector<ValueType> nonZeros(nnz, A.zero);

#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(A.nRows); ++i) {
            for (index cIdx = rowIdx[i], j = 0; cIdx < rowIdx[i + 1]; ++cIdx, ++j)
                columnIdx[cIdx] = columns[i][j];

            columns[i].clear();
            columns[i].resize(0);
            columns[i].shrink_to_fit();
        }

#pragma omp parallel for
        for (omp_index i = 0; i < static_cast<omp_index>(A.nRows); ++i) {
            index k = A.rowIdx[i];
            index l = B.rowIdx[i];
            for (index cIdx = rowIdx[i]; cIdx < rowIdx[i + 1]; ++cIdx) {
                if (k < A.rowIdx[i + 1] && columnIdx[cIdx] == A.columnIdx[k]) {
                    nonZeros[cIdx] = A.nonZeros[k];
                    ++k;
                }

                if (l < B.rowIdx[i + 1] && columnIdx[cIdx] == B.columnIdx[l]) {
                    nonZeros[cIdx] = binaryOp(nonZeros[cIdx], B.nonZeros[l]);
                    ++l;
                }
            }
        }

        return CSRGeneralMatrix(A.nRows, A.nCols, rowIdx, columnIdx, nonZeros, A.zero, true);
    } else { // A or B not sorted
        std::vector<int64_t> columnPointer(A.nCols, -1);
        std::vector<ValueType> Arow(A.nCols, A.zero);
        std::vector<ValueType> Brow(A.nCols, B.zero);

        std::vector<Triplet> triplets;

        for (index i = 0; i < A.nRows; ++i) {
            index listHead = 0;
            count nnz = 0;

            // search for nonZeros in our own matrix
            for (index k = A.rowIdx[i]; k < A.rowIdx[i + 1]; ++k) {
                index j = A.columnIdx[k];
                Arow[j] = A.nonZeros[k];

                columnPointer[j] = listHead;
                listHead = j;
                nnz++;
            }

            // search for nonZeros in the other matrix
            for (index k = B.rowIdx[i]; k < B.rowIdx[i + 1]; ++k) {
                index j = B.columnIdx[k];
                Brow[j] = B.nonZeros[k];

                if (columnPointer[j]
                    == -1) { // our own matrix does not have a nonZero entry in column j
                    columnPointer[j] = listHead;
                    listHead = j;
                    nnz++;
                }
            }

            // apply operator on the found nonZeros in A and B
            for (count k = 0; k < nnz; ++k) {
                ValueType value = binaryOp(Arow[listHead], Brow[listHead]);
                if (value != A.zero)
                    triplets.push_back({i, listHead, value});

                index temp = listHead;
                listHead = columnPointer[listHead];

                // reset for next row
                columnPointer[temp] = -1;
                Arow[temp] = A.zero;
                Brow[temp] = B.zero;
            }

            nnz = 0;
        }

        return CSRGeneralMatrix(A.numberOfRows(), A.numberOfColumns(), triplets);
    }
}

template <typename ValueType>
template <typename F>
void CSRGeneralMatrix<ValueType>::apply(const F unaryElementFunction) {
#pragma omp parallel for
    for (omp_index k = 0; k < static_cast<omp_index>(nonZeros.size()); ++k)
        nonZeros[k] = unaryElementFunction(nonZeros[k]);
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::parallelForNonZeroElementsInRow(index i, L handle) const {
#pragma omp parallel for
    for (omp_index k = rowIdx[i]; k < static_cast<omp_index>(rowIdx[i + 1]); ++k)
        handle(columnIdx[k], nonZeros[k]);
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::forElementsInRow(index i, L handle) const {
    Vector rowVector = row(i);
    index j = 0;
    rowVector.forElements([&](ValueType val) { handle(j++, val); });
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::parallelForElementsInRow(index i, L handle) const {
    row(i).parallelForElements(handle);
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::forElementsInRowOrder(L handle) const {
    for (index i = 0; i < nRows; ++i) {
        index col = 0;
        for (index k = rowIdx[i]; k < rowIdx[i + 1]; ++k) {
            while (col < columnIdx[k]) {
                handle(i, col, getZero());
                ++col;
            }
            handle(i, col, nonZeros[k]);
            ++col;
        }
    }
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::parallelForElementsInRowOrder(L handle) const {
#pragma omp parallel for
    for (omp_index i = 0; i < static_cast<omp_index>(nRows); ++i) {
        index col = 0;
        for (index k = rowIdx[i]; k < rowIdx[i + 1]; ++k) {
            while (col < columnIdx[k]) {
                handle(i, col, getZero());
                ++col;
            }
            handle(i, col, nonZeros[k]);
            ++col;
        }
    }
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::forNonZeroElementsInRowOrder(L handle) const {
    for (index i = 0; i < nRows; ++i)
        for (index k = rowIdx[i]; k < rowIdx[i + 1]; ++k)
            handle(i, columnIdx[k], nonZeros[k]);
}

template <typename ValueType>
template <typename L>
inline void CSRGeneralMatrix<ValueType>::parallelForNonZeroElementsInRowOrder(L handle) const {
#pragma omp parallel for
    for (omp_index i = 0; i < static_cast<omp_index>(nRows); ++i)
        for (index k = rowIdx[i]; k < rowIdx[i + 1]; ++k)
            handle(i, columnIdx[k], nonZeros[k]);
}

// print functions for test debugging / output
template <typename T>
inline std::ostream &operator<<(std::ostream &os, const CSRGeneralMatrix<T> &M) {
    for (index row = 0; row < M.numberOfRows(); ++row) {
        if (row != 0)
            os << std::endl;
        for (index col = 0; col < M.numberOfColumns(); ++col) {
            if (col != 0)
                os << ", ";
            os << M(row, col);
        }
    }
    return os;
}

} /* namespace NetworKit */
#endif // NETWORKIT_ALGEBRAIC_CSR_GENERAL_MATRIX_HPP_