Recent Algorithmic Developments in NetworKit
Alexander van der Grinten
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
Agenda

Since last NETWORKit Day:
- numerous algorithmic additions to NETWORKit
- and lots of refactoring (see previous talk)
Agenda

Since last Networkit Day:
- numerous algorithmic additions to Networkit
- and lots of refactoring (see previous talk)

In this talk: new algorithms and features since ND’17

(Brief tour through various modules . . .)
New Module: Randomization

Task: Given a graph G, construct a new randomized graph G' that preserves some properties (e.g., the degree sequence).
New Module: Randomization

Task: Given a graph G, construct a new randomized graph G' that preserves some properties (e.g., the degree sequence).

Use cases:
- Null-model for network analytics (e.g., modularity)
- Benchmarking graph algorithms
Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

1. Pick random vertices u and v
2. Keep common neighbors of u and v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by $\sigma(i)$

Quickly converges to null model.

In NetworKit: Curveball and GlobalCurveball (pick many trades at a time)
Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices \(u \) and \(v \)
2. Keep common neighbors of \(u, v \)
Randomization: Curveball algorithm

[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by $\sigma(i)$
Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by $\sigma(i)$

Quickly converges to null model.
Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel Penschuck

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices \(u \) and \(v \)
2. Keep common neighbors of \(u, v \)
3. Pick random permutation of disjoint neighbors of \(u \) and \(v \)
4. Replace \(i \)-th neighbor by \(\sigma(i) \)

Quickly converges to null model.

In NetworKit: Curveball and GlobalCurveball (pick many trades at a time)
Network Centrality Module

Centrality measure quantify the importance of vertices within a graph.
Network Centrality Module

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKKit:

- KADABRA betweenness approximation [BN16], [vdGAM19]
Network Centrality Module

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKKit:

- **KADABRA** betweenness approximation
 [BN16], [vdGAM19]

Major additions, not in detail here:

- **Katz** centrality
 [vdGBGBM18]
 Counts walks that start/end at a vertex, weighted by their length
Network Centrality Module

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKit:

- KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:

- Katz centrality [vdGBGBM18]
 Counts walks that start/end at a vertex, weighted by their length

- Spanning edge centrality [HAY16]
 Considers graph as electrical network, measures resistance of edges
 (More related electrical centralities in the pipeline [APvdGM20])
Network Centrality Module

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:
- **KADABRA** betweenness approximation \([BN16, vdGAM19]\)

Major additions, not in detail here:
- **Katz centrality** \([vdGBGBM18]\)

 Counts walks that start/end at a vertex, weighted by their length

 Spanning edge centrality \([HAY16]\)

 Considers graph as electrical network, measures resistance of edges

 (More related electrical centralities in the pipeline \([APvdGM20]\))

- **Top-k (harmonic) closeness** \([BBCMM16]\)

 Computes \(k\) vertices with highest closeness w/o computing all scores
Network Centrality: KADABRA

Let $G = (V, E)$ be a graph. $s, t \in V$.

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.
Network Centrality: KADABRA

Let $G = (V, E)$ be a graph. $s, t \in V$.

σ_{st}: number of shortest s-t paths

$\sigma_{st}(x)$: number of shortest s-t paths over vertex $x \in V$
Network Centrality: KADABRA

Let $G = (V, E)$ be a graph. $s, t \in V$.

σ_{st}: number of shortest s-t paths

$\sigma_{st}(x)$: number of shortest s-t paths over vertex $x \in V$

Betweenness centrality of a vertex $x \in V$:

$$BC(x) = \sum_{s,t \in V \setminus \{x\}} \frac{\sigma_{st}(x)}{\sigma_{st}}$$

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.
Network Centrality: KADABRA

Let $G = (V, E)$ be a graph. $s, t \in V$.

σ_{st}: number of shortest s-t paths

$\sigma_{st}(x)$: number of shortest s-t paths over vertex $x \in V$

Betweenness centrality of a vertex $x \in V$:

$$BC(x) = \sum_{s,t \in V \setminus \{x\}} \frac{\sigma_{st}(x)}{\sigma_{st}}$$

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.
Network Centrality: KADABRA

KADABRA: Sampling-based approximation for betweenness
Network Centrality: KADABRA

KADABRA: Sampling-based approximation for betweenness

- S_1, S_2, S_3
- t_1, t_2, t_3
Network Centrality: KADABRA

KADABRA: Sampling-based approximation for betweenness

Not shown here: (complicated) adaptive stopping condition to determine # of samples.
Network Centrality: KADABRA

KADABRA: Sampling-based approximation for betweenness

Not shown here: (complicated) adaptive stopping condition to determine # of samples.

In NetworKit: fastest available betweenness approximation
Group Centrality Module

Group centrality: measures importance of sets of vertices
Group Centrality Module

Group centrality: measures importance of sets of vertices

Top-k centrality

Group centrality
Group Centrality Module

Group centrality: measures importance of sets of vertices

Support for group centralities recently added to NetworKit.
- Computation of group centrality scores
Group Centrality Module

Group centrality: measures importance of sets of vertices

Support for group centralities recently added to NETWORKIT.
- Computation of group centrality scores
- Finding groups with maximal centrality (usually a hard problem)
Group Centrality Module

New (approximation) algorithms:
- Group degree [Folklore]
Group Centrality Module

New (approximation) algorithms:

- Group degree [Folklore]
- Group betweenness [MTU16]
 Approximation via sampling on hypergraphs
Group Centrality Module

New (approximation) algorithms:

- Group degree [Folklore]
- Group betweenness [MTU16]
 Approximation via sampling on hypergraphs
- GED-Walk [AvdGBZGM19]
 Similar to Katz centrality:
 counts all walks that cross the vertex group, weighted by their length.
Group Centrality Module

New (approximation) algorithms:

- **Group degree** [Folklore]
- **Group betweenness** [MTU16]
 Approximation via sampling on hypergraphs
- **GED-Walk** [AvdGBZGM19]
 Similar to Katz centrality:
 counts all walks that cross the vertex group, weighted by their length.
- **Upcoming: Group closeness** [AvdGM19]
 Fast local-search algorithm

Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit
Graph I/O Module

Addition of various new formats to NETWORKIT, including:

- Formats for graph partitions / communities
- Thrill-compatible binary format
- NETWORKIT-native binary format: substantially faster to read than other formats, smaller than most other (text/binary) formats, Varint encoding: bit-length of IDs adapted to # nodes of the graph
- Goal: represent all data available in NETWORKIT (weights, IDs, ...) in a compact format
Graph I/O Module

Addition of various new formats to NETWORKIT, including:

- Formats for graph partitions / communities
Graph I/O Module

Addition of various new formats to NETWORKIT, including:
- Formats for graph partitions / communities
- Thrill-compatible binary format
Graph I/O Module

Addition of various new formats to NETWORKIT, including:

- Formats for graph partitions / communities
- Thrill-compatible binary format
- NETWORKIT-native binary format
Graph I/O Module

Addition of various new formats to NETWORKIT, including:
- Formats for graph partitions / communities
- Thrill-compatible binary format
- NETWORKIT-native binary format

NETWORKIT’s binary format:
- Substantially faster to read than other formats
Graph I/O Module

Addition of various new formats to NETWORKIT, including:

- Formats for graph partitions / communities
- Thrill-compatible binary format
- NETWORKIT-native binary format

NETWORKIT’s binary format:

- Substantially faster to read than other formats
- Smaller than most other (text/binary) formats
Graph I/O Module

Addition of various new formats to NETWORKIT, including:
- Formats for graph partitions / communities
- Thrill-compatible binary format
- NETWORKIT-native binary format

NETWORKIT’s binary format:
- Substantially faster to read than other formats
- Smaller than most other (text/binary) formats
- Varint encoding: bit-length of IDs adapted to # nodes of the graph
Graph I/O Module

Addition of various new formats to NETWORKIT, including:

- Formats for graph partitions / communities
- Thrill-compatible binary format
- NETWORKIT-native binary format

NETWORKIT’s binary format:

- Substantially faster to read than other formats
- Smaller than most other (text/binary) formats
- Varint encoding: bit-length of IDs adapted to # nodes of the graph
- Goal: represent all data available in NETWORKIT (weights, IDs, . . .) in a compact format
Upcoming: Graph Embeddings
a.k.a. Representation Learning

Problem: Given graph G, map each vertex $v \in V(G)$ to $f(v) \in \mathbb{R}^d$ for some d.

Applications: Enables use of downstream machine learning algorithms (which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:

Idea: if u, v appear together in many random walks, $f(u)$ should be close to $f(v)$.
Upcoming: Graph Embeddings
a.k.a. Representation Learning

Problem: Given graph G, map each vertex $v \in V(G)$ to $f(v) \in \mathbb{R}^d$ for some d.

Applications: Enables use of downstream machine learning algorithms (which work on feature vectors, not graphs).
Upcoming: Graph Embeddings
a.k.a. Representation Learning

Problem: Given graph G, map each vertex $v \in V(G)$ to $f(v) \in \mathbb{R}^d$ for some d.

Applications: Enables use of downstream machine learning algorithms (which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:

- Idea: if u, v appear together in many random walks, $f(u)$ should be close to $f(v)$
Upcoming: Graph Embeddings
a.k.a. Representation Learning

Problem: Given graph G, map each vertex $v \in V(G)$ to $f(v) \in \mathbb{R}^d$ for some d.

Applications: Enables use of downstream machine learning algorithms (which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:
- Idea: if u, v appear together in many random walks, $f(u)$ should be close to $f(v)$

Other embedding algorithms in the future?
Other features

Miscellaneous additions to NETWORKIT:

- Bidirectional shortest path algorithms
 Faster than SSSP if source + target is known
Other features

Miscellaneous additions to NETWORKIT:

- Bidirectional shortest path algorithms
 Faster than SSSP if source + target is known

- Biconnected Components
 Classical graph problem; useful building block for other algorithms
Other features

Miscellaneous additions to NETWORKIT:

- **Bidirectional shortest path algorithms**
 Faster than SSSP if source + target is known

- **Biconnected Components**
 Classical graph problem; useful building block for other algorithms

- **Graph generator by F.-B. Mocnik [M18]**
 Models spacial graphs
simexpal

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)
simexpal

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

- Replace hand-written scripts to run algorithms on large numbers of instances
simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

- Replace hand-written scripts to run algorithms on large numbers of instances
- Useful for algorithm engineering, but also for analysis pipelines
simexpal

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

- Replace hand-written scripts to run algorithms on large numbers of instances
- Useful for algorithm engineering, but also for analysis pipelines
- Support for multiple configurations of algorithms out of the box
simexpal

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

- Replace hand-written scripts to run algorithms on large numbers of instances
- Useful for algorithm engineering, but also for analysis pipelines
- Support for multiple configurations of algorithms out of the box
- Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal
simexpal

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

- Replace hand-written scripts to run algorithms on large numbers of instances
- Useful for algorithm engineering, but also for analysis pipelines
- Support for multiple configurations of algorithms out of the box
- Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal
Thank You!