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preserves some properties (e.g., the degree sequence).

Use cases:
Null-model for network analytics (e.g., modularity)
Benchmarking graph algorithms
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Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck
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Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)
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Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:

KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:
Katz centrality [vdGBGBM18]
Counts walks that start/end at a vertex, weighted by their length

Spanning edge centrality [HAY16]
Considers graph as electrical network, measures resistance of edges
(More related electrical centralities in the pipeline [APvdGM20])

Top-k (harmonic) closeness [BBCMM16]
Computes k vertices with highest closeness w/o computing all scores
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Let G = (V, E) be a graph. s, t ∈ V.

σst: number of shortest s-t paths
σst(x): number of shortest s-t paths over vertex x ∈ V

Betweenness centrality
of a vertex x ∈ V:

BC(x) = ∑
s,t∈V\{x}

σst(x)
σst

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.

wikipedia.org/wiki/Betweenness_centrality
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KADABRA: Sampling-based approximation for betweenness

Not shown here:
(complicated) adaptive stopping condition to determine # of samples.

In NETWORKIT: fastest available betweenness approximation
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Group centrality: measures importance of sets of vertices

Top-k centrality Group centrality

Support for group centralities recently added to NETWORKIT.
Computation of group centrality scores
Finding groups with maximal centrality (usually a hard problem)
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New (approximation) algorithms:
Group degree [Folklore]

Group betweenness [MTU16]
Approximation via sampling on hypergraphs

GED-Walk [AvdGBZGM19]
Similar to Katz centrality:
counts all walks that cross the vertex group, weighted by their length.
Upcoming: Group closeness [AvdGM19]
Fast local-search algorithm
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Addition of various new formats to NETWORKIT, including:

Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format
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Problem: Given graph G, map each vertex v ∈ V(G) to f (v) ∈ Rd for
some d.

Applications: Enables use of downstream machine learning algorithms
(which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:
Idea: if u, v appear together in many random walks, f (u) should be
close to f (v)

Other embedding algorithms in the future?
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Miscellaneous additions to NETWORKIT:
Bidirectional shortest path algorithms
Faster than SSSP if source + target is known

Biconnected Components
Classical graph problem; useful building block for other algorithms

Graph generator by F.-B. Mocnik [M18]
Models spacial graphs
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simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances
Useful for algorithm engineering, but also for analysis pipelines
Support for multiple configurations of algorithms out of the box
Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal
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Thank You!


