
ND20
1 Alexander van der Grinten, HU Berlin

Recent Algorithmic Developments in NetworKit

Department of Computer Science, Humboldt-Universität zu Berlin, Germany

M A
SC y

Recent Algorithmic Developments
in NetworKit
Alexander van der Grinten



ND20

Agenda

2 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Since last NETWORKIT Day:
numerous algorithmic additions to NETWORKIT

and lots of refactoring (see previous talk)

In this talk: new algorithms and features
since ND’17

(Brief tour through various modules . . .)



ND20

Agenda

2 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Since last NETWORKIT Day:
numerous algorithmic additions to NETWORKIT

and lots of refactoring (see previous talk)

In this talk: new algorithms and features
since ND’17

(Brief tour through various modules . . .)



ND20

New Module: Randomization

3 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Task: Given a graph G, construct a new randomized graph G′ that
preserves some properties (e.g., the degree sequence).

Use cases:
Null-model for network analytics (e.g., modularity)
Benchmarking graph algorithms



ND20

New Module: Randomization

3 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Task: Given a graph G, construct a new randomized graph G′ that
preserves some properties (e.g., the degree sequence).

Use cases:
Null-model for network analytics (e.g., modularity)
Benchmarking graph algorithms



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v

2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v

3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v

4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Randomization: Curveball algorithm
[SNBFS14], [CHMPTW18], code contributed by Manuel
Penschuck

4 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Curveball: Randomize by applying sequence of “trades”.

Each trade:
1. Pick random vertices u and v
2. Keep common neighbors of u, v
3. Pick random permutation of disjoint neighbors of u and v
4. Replace i-th neighbor by σ(i)

Quickly converges to null model.

In NETWORKIT: Curveball and GlobalCurveball (pick many trades at a
time)



ND20

Network Centrality Module

5 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:

KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:
Katz centrality [vdGBGBM18]
Counts walks that start/end at a vertex, weighted by their length

Spanning edge centrality [HAY16]
Considers graph as electrical network, measures resistance of edges
(More related electrical centralities in the pipeline [APvdGM20])

Top-k (harmonic) closeness [BBCMM16]
Computes k vertices with highest closeness w/o computing all scores



ND20

Network Centrality Module

5 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:

KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:
Katz centrality [vdGBGBM18]
Counts walks that start/end at a vertex, weighted by their length

Spanning edge centrality [HAY16]
Considers graph as electrical network, measures resistance of edges
(More related electrical centralities in the pipeline [APvdGM20])

Top-k (harmonic) closeness [BBCMM16]
Computes k vertices with highest closeness w/o computing all scores



ND20

Network Centrality Module

5 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:

KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:
Katz centrality [vdGBGBM18]
Counts walks that start/end at a vertex, weighted by their length

Spanning edge centrality [HAY16]
Considers graph as electrical network, measures resistance of edges
(More related electrical centralities in the pipeline [APvdGM20])

Top-k (harmonic) closeness [BBCMM16]
Computes k vertices with highest closeness w/o computing all scores



ND20

Network Centrality Module

5 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:

KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:
Katz centrality [vdGBGBM18]
Counts walks that start/end at a vertex, weighted by their length

Spanning edge centrality [HAY16]
Considers graph as electrical network, measures resistance of edges
(More related electrical centralities in the pipeline [APvdGM20])

Top-k (harmonic) closeness [BBCMM16]
Computes k vertices with highest closeness w/o computing all scores



ND20

Network Centrality Module

5 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Centrality measure quantify the importance of vertices within a graph.

Major additions to NETWORKIT:

KADABRA betweenness approximation [BN16], [vdGAM19]

Major additions, not in detail here:
Katz centrality [vdGBGBM18]
Counts walks that start/end at a vertex, weighted by their length

Spanning edge centrality [HAY16]
Considers graph as electrical network, measures resistance of edges
(More related electrical centralities in the pipeline [APvdGM20])

Top-k (harmonic) closeness [BBCMM16]
Computes k vertices with highest closeness w/o computing all scores



ND20

Network Centrality: KADABRA

6 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Let G = (V, E) be a graph. s, t ∈ V.

σst: number of shortest s-t paths
σst(x): number of shortest s-t paths over vertex x ∈ V

Betweenness centrality
of a vertex x ∈ V:

BC(x) = ∑
s,t∈V\{x}

σst(x)
σst

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.

wikipedia.org/wiki/Betweenness_centrality


ND20

Network Centrality: KADABRA

6 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Let G = (V, E) be a graph. s, t ∈ V.

σst: number of shortest s-t paths
σst(x): number of shortest s-t paths over vertex x ∈ V

Betweenness centrality
of a vertex x ∈ V:

BC(x) = ∑
s,t∈V\{x}

σst(x)
σst

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.

wikipedia.org/wiki/Betweenness_centrality


ND20

Network Centrality: KADABRA

6 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Let G = (V, E) be a graph. s, t ∈ V.

σst: number of shortest s-t paths
σst(x): number of shortest s-t paths over vertex x ∈ V

Betweenness centrality
of a vertex x ∈ V:

BC(x) = ∑
s,t∈V\{x}

σst(x)
σst

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.

wikipedia.org/wiki/Betweenness_centrality


ND20

Network Centrality: KADABRA

6 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Let G = (V, E) be a graph. s, t ∈ V.

σst: number of shortest s-t paths
σst(x): number of shortest s-t paths over vertex x ∈ V

Betweenness centrality
of a vertex x ∈ V:

BC(x) = ∑
s,t∈V\{x}

σst(x)
σst

Image by Claudio Rocchini (CC-BY). Taken from wikipedia.org/wiki/Betweenness_centrality.

wikipedia.org/wiki/Betweenness_centrality


ND20

Network Centrality: KADABRA

7 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

KADABRA: Sampling-based approximation for betweenness

Not shown here:
(complicated) adaptive stopping condition to determine # of samples.

In NETWORKIT: fastest available betweenness approximation



ND20

Network Centrality: KADABRA

7 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

KADABRA: Sampling-based approximation for betweenness

Not shown here:
(complicated) adaptive stopping condition to determine # of samples.

In NETWORKIT: fastest available betweenness approximation



ND20

Network Centrality: KADABRA

7 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

KADABRA: Sampling-based approximation for betweenness

Not shown here:
(complicated) adaptive stopping condition to determine # of samples.

In NETWORKIT: fastest available betweenness approximation



ND20

Network Centrality: KADABRA

7 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

KADABRA: Sampling-based approximation for betweenness

Not shown here:
(complicated) adaptive stopping condition to determine # of samples.

In NETWORKIT: fastest available betweenness approximation



ND20

Group Centrality Module

8 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Group centrality: measures importance of sets of vertices

Top-k centrality Group centrality

Support for group centralities recently added to NETWORKIT.
Computation of group centrality scores
Finding groups with maximal centrality (usually a hard problem)



ND20

Group Centrality Module

8 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Group centrality: measures importance of sets of vertices

Top-k centrality Group centrality

Support for group centralities recently added to NETWORKIT.
Computation of group centrality scores
Finding groups with maximal centrality (usually a hard problem)



ND20

Group Centrality Module

8 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Group centrality: measures importance of sets of vertices

Top-k centrality Group centrality

Support for group centralities recently added to NETWORKIT.
Computation of group centrality scores

Finding groups with maximal centrality (usually a hard problem)



ND20

Group Centrality Module

8 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Group centrality: measures importance of sets of vertices

Top-k centrality Group centrality

Support for group centralities recently added to NETWORKIT.
Computation of group centrality scores
Finding groups with maximal centrality (usually a hard problem)



ND20

Group Centrality Module

9 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

New (approximation) algorithms:
Group degree [Folklore]

Group betweenness [MTU16]
Approximation via sampling on hypergraphs

GED-Walk [AvdGBZGM19]
Similar to Katz centrality:
counts all walks that cross the vertex group, weighted by their length.
Upcoming: Group closeness [AvdGM19]
Fast local-search algorithm



ND20

Group Centrality Module

9 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

New (approximation) algorithms:
Group degree [Folklore]

Group betweenness [MTU16]
Approximation via sampling on hypergraphs

GED-Walk [AvdGBZGM19]
Similar to Katz centrality:
counts all walks that cross the vertex group, weighted by their length.
Upcoming: Group closeness [AvdGM19]
Fast local-search algorithm



ND20

Group Centrality Module

9 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

New (approximation) algorithms:
Group degree [Folklore]

Group betweenness [MTU16]
Approximation via sampling on hypergraphs

GED-Walk [AvdGBZGM19]
Similar to Katz centrality:
counts all walks that cross the vertex group, weighted by their length.

Upcoming: Group closeness [AvdGM19]
Fast local-search algorithm



ND20

Group Centrality Module

9 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

New (approximation) algorithms:
Group degree [Folklore]

Group betweenness [MTU16]
Approximation via sampling on hypergraphs

GED-Walk [AvdGBZGM19]
Similar to Katz centrality:
counts all walks that cross the vertex group, weighted by their length.
Upcoming: Group closeness [AvdGM19]
Fast local-search algorithm



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:

Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities

Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities
Thrill-compatible binary format

NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats

Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats

Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph

Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Graph I/O Module

10 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Addition of various new formats to NETWORKIT, including:
Formats for graph partitions / communities
Thrill-compatible binary format
NETWORKIT-native binary format

NETWORKIT’s binary format:
Substantially faster to read than other formats
Smaller than most other (text/binary) formats
Varint encoding: bit-length of IDs adapted to # nodes of the graph
Goal: represent all data available in NETWORKIT(weights, IDs, . . .) in
a compact format



ND20

Upcoming: Graph Embeddings
a.k.a. Representation Learning

11 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Problem: Given graph G, map each vertex v ∈ V(G) to f (v) ∈ Rd for
some d.

Applications: Enables use of downstream machine learning algorithms
(which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:
Idea: if u, v appear together in many random walks, f (u) should be
close to f (v)

Other embedding algorithms in the future?



ND20

Upcoming: Graph Embeddings
a.k.a. Representation Learning

11 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Problem: Given graph G, map each vertex v ∈ V(G) to f (v) ∈ Rd for
some d.

Applications: Enables use of downstream machine learning algorithms
(which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:
Idea: if u, v appear together in many random walks, f (u) should be
close to f (v)

Other embedding algorithms in the future?



ND20

Upcoming: Graph Embeddings
a.k.a. Representation Learning

11 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Problem: Given graph G, map each vertex v ∈ V(G) to f (v) ∈ Rd for
some d.

Applications: Enables use of downstream machine learning algorithms
(which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:
Idea: if u, v appear together in many random walks, f (u) should be
close to f (v)

Other embedding algorithms in the future?



ND20

Upcoming: Graph Embeddings
a.k.a. Representation Learning

11 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Problem: Given graph G, map each vertex v ∈ V(G) to f (v) ∈ Rd for
some d.

Applications: Enables use of downstream machine learning algorithms
(which work on feature vectors, not graphs).

Start with well-known node2vec algorithm [GL16]:
Idea: if u, v appear together in many random walks, f (u) should be
close to f (v)

Other embedding algorithms in the future?



ND20

Other features

12 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Miscellaneous additions to NETWORKIT:
Bidirectional shortest path algorithms
Faster than SSSP if source + target is known

Biconnected Components
Classical graph problem; useful building block for other algorithms

Graph generator by F.-B. Mocnik [M18]
Models spacial graphs



ND20

Other features

12 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Miscellaneous additions to NETWORKIT:
Bidirectional shortest path algorithms
Faster than SSSP if source + target is known

Biconnected Components
Classical graph problem; useful building block for other algorithms

Graph generator by F.-B. Mocnik [M18]
Models spacial graphs



ND20

Other features

12 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

Miscellaneous additions to NETWORKIT:
Bidirectional shortest path algorithms
Faster than SSSP if source + target is known

Biconnected Components
Classical graph problem; useful building block for other algorithms

Graph generator by F.-B. Mocnik [M18]
Models spacial graphs



ND20

simexpal

13 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances
Useful for algorithm engineering, but also for analysis pipelines
Support for multiple configurations of algorithms out of the box
Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal


ND20

simexpal

13 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances

Useful for algorithm engineering, but also for analysis pipelines
Support for multiple configurations of algorithms out of the box
Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal


ND20

simexpal

13 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances
Useful for algorithm engineering, but also for analysis pipelines

Support for multiple configurations of algorithms out of the box
Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal


ND20

simexpal

13 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances
Useful for algorithm engineering, but also for analysis pipelines
Support for multiple configurations of algorithms out of the box

Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal


ND20

simexpal

13 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances
Useful for algorithm engineering, but also for analysis pipelines
Support for multiple configurations of algorithms out of the box
Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal


ND20

simexpal

13 Alexander van der Grinten, HU Berlin
Recent Algorithmic Developments in NetworKit

simexpal: tool to manage algorithmic experiments
external project (not part of NETWORKIT)

Replace hand-written scripts to run algorithms on large numbers of
instances
Useful for algorithm engineering, but also for analysis pipelines
Support for multiple configurations of algorithms out of the box
Support for reproducible builds (e.g., of C++ code)

Available from: https://github.com/hu-macsy/simexpal

https://github.com/hu-macsy/simexpal


ND20
14 Alexander van der Grinten, HU Berlin

Recent Algorithmic Developments in NetworKit

Thank You!


